1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
# coding: utf-8
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Module for writing sparse frames in HDF5 in the Nexus style"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "20/11/2020"
__status__ = "production"
__docformat__ = 'restructuredtext'
import json
from collections import OrderedDict
import logging
logger = logging.getLogger(__name__)
import numpy
from .. import version
from .nexus import Nexus, get_isotime
try:
import hdf5plugin
except:
cmp = {}
else:
cmp = hdf5plugin.Bitshuffle()
def _generate_densify_script(integer):
"Provide a script to densify those data"
res = """#python
import numpy
frames = []
masked = numpy.where(numpy.logical_not(numpy.isfinite(mask)))
for idx, bg in enumerate(background_avg):
dense = numpy.interp(mask, radius, bg)
flat = dense.ravel()
start, stop = frame_ptr[idx:idx+2]
flat[index[start:stop]] = intensity[start:stop]"""
if integer:
res += """
dense = numpy.round(dense)
dense[masked] = dummy"""
else:
res += """
dense[masked] = numpy.NaN"""
res += """
frames.append(dense.astype(intensity.dtype))
"""
return res
def save_sparse(filename, frames, beamline="beamline", ai=None, source=None, extra={}):
"""Write the list of frames into a HDF5 file
:param filename: name of the file
:param frames: list of sparse frames (as built by sparsify)
:param beamline: name of the beamline as text
:param ai: Instance of geometry or azimuthal integrator
:param source: list of input files
:param extra: dict with extra metadata
:return: None
"""
assert len(frames)
with Nexus(filename, mode="w", creator="pyFAI_%s" % version) as nexus:
instrument = nexus.new_instrument(instrument_name=beamline)
entry = instrument.parent
sparse_grp = nexus.new_class(entry, "sparse_frames", class_type="NXdata")
entry.attrs["default"] = sparse_grp.name
sparse_grp["frame_ptr"] = numpy.concatenate(([0], numpy.cumsum([i.intensity.size for i in frames]))).astype(dtype=numpy.uint32)
index = numpy.concatenate([i.index for i in frames]).astype(numpy.uint32)
intensity = numpy.concatenate([i.intensity for i in frames])
is_integer = numpy.issubdtype(intensity.dtype, numpy.integer)
sparse_grp["script"] = _generate_densify_script(is_integer)
sparse_grp.create_dataset("index", data=index, **cmp)
sparse_grp.create_dataset("intensity", data=intensity, **cmp)
radius = frames[0].radius
mask = frames[0].mask
dummy = frames[0].dummy
if dummy is None:
if is_integer:
dummy = 0
else:
dummy = numpy.NaN
sparse_grp.create_dataset("dummy", data=dummy)
rds = sparse_grp.create_dataset("radius", data=radius, dtype=numpy.float32)
rds.attrs["interpretation"] = "spectrum"
mskds = sparse_grp.create_dataset("mask", data=mask, **cmp)
mskds.attrs["interpretation"] = "image"
background_avg = numpy.vstack([f.background_avg for f in frames])
background_std = numpy.vstack([f.background_std for f in frames])
bgavgds = sparse_grp.create_dataset("background_avg", data=background_avg, **cmp)
bgavgds.attrs["interpretation"] = "spectrum"
bgavgds.attrs["signal"] = 1
bgavgds.attrs["long_name"] = "Average value of background"
bgstdds = sparse_grp.create_dataset("background_std", data=background_std, **cmp)
sparse_grp["errors"] = bgstdds
bgstdds.attrs["interpretation"] = "spectrum"
bgstdds.attrs["long_name"] = "Standard deviation of background"
sparse_grp.attrs["signal"] = "background_avg"
try:
sparse_grp.attrs["axes"] = [".", "radius"]
except TypeError:
logger.error("Please upgrade your installation of h5py !!!")
if ai is not None:
sparsify_grp = nexus.new_class(entry, "sparsify", class_type="NXprocess")
sparsify_grp["program"] = "pyFAI"
sparsify_grp["sequence_index"] = 1
sparsify_grp["version"] = version
sparsify_grp["date"] = get_isotime()
if source is not None:
sparsify_grp["source"] = source
config_grp = nexus.new_class(sparsify_grp, "configuration", class_type="NXnote")
config_grp["type"] = "text/json"
parameters = OrderedDict([("geometry", ai.get_config()),
("sparsify", extra)])
config_grp["data"] = json.dumps(parameters, indent=2, separators=(",\r\n", ": "))
detector_grp = nexus.new_class(instrument, ai.detector.name.replace(" ", "_"), "NXdetector")
dist_ds = detector_grp.create_dataset("distance", data=ai.dist)
dist_ds.attrs["units"] = "m"
xpix_ds = detector_grp.create_dataset("x_pixel_size", data=ai.pixel2)
xpix_ds.attrs["units"] = "m"
ypix_ds = detector_grp.create_dataset("y_pixel_size", data=ai.pixel1)
ypix_ds.attrs["units"] = "m"
f2d = ai.getFit2D()
xbc_ds = detector_grp.create_dataset("beam_center_x", data=f2d["centerX"])
xbc_ds.attrs["units"] = "pixel"
ybc_ds = detector_grp.create_dataset("beam_center_y", data=f2d["centerY"])
ybc_ds.attrs["units"] = "pixel"
if ai.wavelength is not None:
monochromator_grp = nexus.new_class(instrument, "monchromator", "NXmonochromator")
wl_ds = monochromator_grp.create_dataset("wavelength", data=numpy.float32(ai.wavelength * 1e10))
wl_ds.attrs["units"] = "Å"
# wl_ds.attrs["resolution"] = 0.014
# nrj_ds = monochromator_grp.create_dataset("energy", data=numpy.floaself.energy)
# nrj_ds.attrs["units"] = "keV"
# #nrj_ds.attrs["resolution"] = 0.014
|