File: sparse_frame.py

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (164 lines) | stat: -rw-r--r-- 7,353 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding: utf-8
#
#    Project: Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2015-2020 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""Module for writing sparse frames in HDF5 in the Nexus style"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "20/11/2020"
__status__ = "production"
__docformat__ = 'restructuredtext'

import json
from collections import OrderedDict
import logging
logger = logging.getLogger(__name__)
import numpy
from .. import version
from .nexus import Nexus, get_isotime

try:
    import hdf5plugin
except:
    cmp = {}
else:
    cmp = hdf5plugin.Bitshuffle()


def _generate_densify_script(integer):
    "Provide a script to densify those data"
    res = """#python
import numpy
frames = []
masked = numpy.where(numpy.logical_not(numpy.isfinite(mask)))
for idx, bg in enumerate(background_avg):
    dense = numpy.interp(mask, radius, bg)
    flat = dense.ravel()
    start, stop = frame_ptr[idx:idx+2]
    flat[index[start:stop]] = intensity[start:stop]"""
    if integer:
        res += """
    dense = numpy.round(dense)
    dense[masked] = dummy"""
    else:
        res += """
    dense[masked] = numpy.NaN"""
    res += """
    frames.append(dense.astype(intensity.dtype))
"""
    return res


def save_sparse(filename, frames, beamline="beamline", ai=None, source=None, extra={}):
    """Write the list of frames into a HDF5 file
    
    :param filename: name of the file
    :param frames: list of sparse frames (as built by sparsify)
    :param beamline: name of the beamline as text
    :param ai: Instance of geometry or azimuthal integrator
    :param source: list of input files
    :param extra: dict with extra metadata 
    :return: None
    """
    assert len(frames)
    with Nexus(filename, mode="w", creator="pyFAI_%s" % version) as nexus:
        instrument = nexus.new_instrument(instrument_name=beamline)
        entry = instrument.parent
        sparse_grp = nexus.new_class(entry, "sparse_frames", class_type="NXdata")
        entry.attrs["default"] = sparse_grp.name
        sparse_grp["frame_ptr"] = numpy.concatenate(([0], numpy.cumsum([i.intensity.size for i in frames]))).astype(dtype=numpy.uint32)
        index = numpy.concatenate([i.index for i in frames]).astype(numpy.uint32)
        intensity = numpy.concatenate([i.intensity for i in frames])
        is_integer = numpy.issubdtype(intensity.dtype, numpy.integer)
        sparse_grp["script"] = _generate_densify_script(is_integer)
        sparse_grp.create_dataset("index", data=index, **cmp)
        sparse_grp.create_dataset("intensity", data=intensity, **cmp)
        radius = frames[0].radius
        mask = frames[0].mask
        dummy = frames[0].dummy
        if dummy is None:
            if is_integer:
                dummy = 0
            else:
                dummy = numpy.NaN
        sparse_grp.create_dataset("dummy", data=dummy)
        rds = sparse_grp.create_dataset("radius", data=radius, dtype=numpy.float32)
        rds.attrs["interpretation"] = "spectrum"
        mskds = sparse_grp.create_dataset("mask", data=mask, **cmp)
        mskds.attrs["interpretation"] = "image"
        background_avg = numpy.vstack([f.background_avg for f in frames])
        background_std = numpy.vstack([f.background_std for f in frames])
        bgavgds = sparse_grp.create_dataset("background_avg", data=background_avg, **cmp)
        bgavgds.attrs["interpretation"] = "spectrum"
        bgavgds.attrs["signal"] = 1
        bgavgds.attrs["long_name"] = "Average value of background"
        bgstdds = sparse_grp.create_dataset("background_std", data=background_std, **cmp)
        sparse_grp["errors"] = bgstdds
        bgstdds.attrs["interpretation"] = "spectrum"
        bgstdds.attrs["long_name"] = "Standard deviation of background"
        sparse_grp.attrs["signal"] = "background_avg"
        try:
            sparse_grp.attrs["axes"] = [".", "radius"]
        except TypeError:
            logger.error("Please upgrade your installation of h5py !!!")

        if ai is not None:
            sparsify_grp = nexus.new_class(entry, "sparsify", class_type="NXprocess")
            sparsify_grp["program"] = "pyFAI"
            sparsify_grp["sequence_index"] = 1
            sparsify_grp["version"] = version
            sparsify_grp["date"] = get_isotime()
            if source is not None:
                sparsify_grp["source"] = source
            config_grp = nexus.new_class(sparsify_grp, "configuration", class_type="NXnote")
            config_grp["type"] = "text/json"
            parameters = OrderedDict([("geometry", ai.get_config()),
                                      ("sparsify", extra)])
            config_grp["data"] = json.dumps(parameters, indent=2, separators=(",\r\n", ": "))

            detector_grp = nexus.new_class(instrument, ai.detector.name.replace(" ", "_"), "NXdetector")
            dist_ds = detector_grp.create_dataset("distance", data=ai.dist)
            dist_ds.attrs["units"] = "m"
            xpix_ds = detector_grp.create_dataset("x_pixel_size", data=ai.pixel2)
            xpix_ds.attrs["units"] = "m"
            ypix_ds = detector_grp.create_dataset("y_pixel_size", data=ai.pixel1)
            ypix_ds.attrs["units"] = "m"
            f2d = ai.getFit2D()
            xbc_ds = detector_grp.create_dataset("beam_center_x", data=f2d["centerX"])
            xbc_ds.attrs["units"] = "pixel"
            ybc_ds = detector_grp.create_dataset("beam_center_y", data=f2d["centerY"])
            ybc_ds.attrs["units"] = "pixel"
            if ai.wavelength is not None:
                monochromator_grp = nexus.new_class(instrument, "monchromator", "NXmonochromator")
                wl_ds = monochromator_grp.create_dataset("wavelength", data=numpy.float32(ai.wavelength * 1e10))
                wl_ds.attrs["units"] = "Å"
                # wl_ds.attrs["resolution"] = 0.014
#                 nrj_ds = monochromator_grp.create_dataset("energy", data=numpy.floaself.energy)
#                 nrj_ds.attrs["units"] = "keV"
#                 #nrj_ds.attrs["resolution"] = 0.014