1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2014-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "08/01/2021"
__status__ = "production"
import sys
import os
import threading
from math import ceil, sqrt
import logging
logger = logging.getLogger(__name__)
import numpy
import fabio
from scipy.ndimage import label, distance_transform_edt
from scipy.ndimage.filters import median_filter
from .utils.decorators import deprecated
from .ext.bilinear import Bilinear
from .utils import gaussian_filter, binning, unbinning, is_far_from_group
if os.name != "nt":
WindowsError = RuntimeError
class Massif(object):
"""
A massif is defined as an area around a peak, it is used to find neighboring peaks
"""
TARGET_SIZE = 1024
def __init__(self, data=None, mask=None):
"""Constructor of the class...
:param data: 2D array or filename (discouraged)
:param mask: array with non zero for invalid data
"""
if isinstance(data, (str,)) and os.path.isfile(data):
self.data = fabio.open(data).data.astype("float32")
elif isinstance(data, fabio.fabioimage.fabioimage):
self.data = data.data.astype("float32")
else:
try:
self.data = data.astype("float32")
except Exception as error:
logger.error("Unable to understand this type of data %s: %s", data, error)
self.log_info = True
"""If true, more information is displayed in the logger relative to picking."""
self.mask = mask
self._cleaned_data = None
self._bilin = Bilinear(self.data)
self._blurred_data = None
self._median_data = None
self._labeled_massif = None
self._number_massif = None
self._valley_size = None
self._binned_data = None
self._reconstruct_used = None
self.binning = None # Binning is 2-list usually
self._sem = threading.Semaphore()
self._sem_label = threading.Semaphore()
self._sem_binning = threading.Semaphore()
self._sem_median = threading.Semaphore()
def nearest_peak(self, x):
"""
:param x: coordinates of the peak
:returns: the coordinates of the nearest peak
"""
out = self._bilin.local_maxi(x)
if isinstance(out, tuple):
res = out
elif isinstance(out, numpy.ndarray):
res = tuple(out)
else:
res = [int(i) for idx, i in enumerate(out) if 0 <= i < self.data.shape[idx]]
if (len(res) != 2) or not((0 <= out[0] < self.data.shape[0]) and (0 <= res[1] < self.data.shape[1])):
logger.warning("in nearest_peak %s -> %s", x, out)
return
elif (self.mask is not None) and self.mask[int(res[0]), int(res[1])]:
logger.info("Masked pixel %s -> %s", x, out)
return
else:
return res
def calculate_massif(self, x):
"""
defines a map of the massif around x and returns the mask
"""
labeled = self.get_labeled_massif()
if labeled[x[0], x[1]] > 0: # without relabeled the background is 0 labeled.max():
return (labeled == labeled[x[0], x[1]])
def find_peaks(self, x, nmax=200, annotate=None, massif_contour=None, stdout=sys.stdout):
"""
All in one function that finds a maximum from the given seed (x)
then calculates the region extension and extract position of the neighboring peaks.
:param Tuple[int] x: coordinates of the peak, seed for the calculation
:param int nmax: maximum number of peak per region
:param annotate: callback method taking number of points + coordinate as input.
:param massif_contour: callback to show the contour of a massif with the given index.
:param stdout: this is the file where output is written by default.
:return: list of peaks
"""
region = self.calculate_massif(x)
if region is None:
if self.log_info:
logger.error("You picked a background point at %s", x)
return []
xinit = self.nearest_peak(x)
if xinit is None:
if self.log_info:
logger.error("Unable to find peak in the vinicy of %s", x)
return []
else:
if not region[int(xinit[0] + 0.5), int(xinit[1] + 0.5)]:
logger.error("Nearest peak %s is not in the same region %s", xinit, x)
return []
if annotate is not None:
try:
annotate(xinit, x)
except Exception as error:
logger.debug("Backtrace", exc_info=True)
logger.error("Error in annotate %i: %i %i. %s", 0, xinit[0], xinit[1], error)
listpeaks = []
listpeaks.append(xinit)
cleaned_data = self.cleaned_data
mean = cleaned_data[region].mean(dtype=numpy.float64)
region2 = region * (cleaned_data > mean)
idx = numpy.vstack(numpy.where(region2)).T
numpy.random.shuffle(idx)
nmax = min(nmax, int(ceil(sqrt(idx.shape[0]))))
if massif_contour is not None:
try:
massif_contour(region)
except (WindowsError, MemoryError) as error:
logger.debug("Backtrace", exc_info=True)
logger.error("Error in plotting region: %s", error)
nbFailure = 0
for j in idx:
xopt = self.nearest_peak(j)
if xopt is None:
nbFailure += 1
continue
if (region2[int(xopt[0] + 0.5), int(xopt[1] + 0.5)]) and not (xopt in listpeaks):
if stdout:
stdout.write("[ %4i, %4i ] --> [ %5.1f, %5.1f ] after %3i iterations %s" % (tuple(j) + tuple(xopt) + (nbFailure, os.linesep)))
listpeaks.append(xopt)
nbFailure = 0
else:
nbFailure += 1
if (len(listpeaks) > nmax) or (nbFailure > 2 * nmax):
break
return listpeaks
def peaks_from_area(self, mask, Imin=numpy.finfo(numpy.float64).min,
keep=1000, dmin=0.0, seed=None, **kwarg):
"""
Return the list of peaks within an area
:param mask: 2d array with mask.
:param Imin: minimum of intensity above the background to keep the point
:param keep: maximum number of points to keep
:param kwarg: ignored parameters
:param dmin: minimum distance to another peak
:param seed: list of good guesses to start with
:return: list of peaks [y,x], [y,x], ...]
"""
all_points = numpy.vstack(numpy.where(mask)).T
res = []
cnt = 0
dmin2 = dmin * dmin
if len(all_points) > 0:
numpy.random.shuffle(all_points)
if seed:
seeds = numpy.array(list(seed))
if len(seeds) > 0:
numpy.random.shuffle(seeds)
all_points = numpy.concatenate((seeds, all_points))
for idx in all_points:
out = self.nearest_peak(idx)
if out is not None:
msg = "[ %3i, %3i ] -> [ %.1f, %.1f ]"
logger.debug(msg, idx[1], idx[0], out[1], out[0])
p0, p1 = int(round(out[0])), int(round(out[1]))
if mask[p0, p1]:
if (self.data[p0, p1] > Imin) and is_far_from_group(out, res, dmin2):
res.append(out)
cnt = 0
if len(res) >= keep or cnt > keep:
break
else:
cnt += 1
return res
def init_valley_size(self):
if self._valley_size is None:
self.valley_size = max(5., max(self.data.shape) / 50.)
@property
def valley_size(self):
"Defines the minimum distance between two massifs"
if self._valley_size is None:
self.init_valley_size()
return self._valley_size
@valley_size.setter
def valley_size(self, size):
new_size = float(size)
if self._valley_size != new_size:
self._valley_size = new_size
t = threading.Thread(target=self.get_labeled_massif)
t.start()
@valley_size.deleter
def valley_size(self):
self._valley_size = None
self._blurred_data = None
@property
def cleaned_data(self):
if self.mask is None:
return self.data
else:
if self._cleaned_data is None:
idx = distance_transform_edt(self.mask,
return_distances=False,
return_indices=True)
self._cleaned_data = self.data[tuple(idx)]
return self._cleaned_data
def get_binned_data(self):
"""
:return: binned data
"""
if self._binned_data is None:
with self._sem_binning:
if self._binned_data is None:
logger.info("Image size is %s", self.data.shape)
self.binning = []
for i in self.data.shape:
if i % self.TARGET_SIZE == 0:
self.binning.append(max(1, i // self.TARGET_SIZE))
else:
for j in range(i // self.TARGET_SIZE - 1, 0, -1):
if i % j == 0:
self.binning.append(max(1, j))
break
else:
self.binning.append(1)
# self.binning = max([max(1, i // self.TARGET_SIZE) for i in self.data.shape])
logger.info("Binning size is %s", self.binning)
self._binned_data = binning(self.cleaned_data, self.binning)
return self._binned_data
def get_median_data(self):
"""
:return: a spatial median filtered image 3x3
"""
if self._median_data is None:
with self._sem_median:
if self._median_data is None:
self._median_data = median_filter(self.cleaned_data, 3)
return self._median_data
def get_blurred_data(self):
"""
:return: a blurred image
"""
if self._blurred_data is None:
with self._sem:
if self._blurred_data is None:
logger.debug("Blurring image with kernel size: %s", self.valley_size)
self._blurred_data = gaussian_filter(self.get_binned_data(),
[self.valley_size / i for i in self.binning],
mode="reflect")
return self._blurred_data
def get_labeled_massif(self, pattern=None, reconstruct=True):
"""
:param pattern: 3x3 matrix
:param reconstruct: if False, split massif at masked position, else reconstruct missing part.
:return: an image composed of int with a different value for each massif
"""
if self._labeled_massif is None:
with self._sem_label:
if self._labeled_massif is None:
if pattern is None:
pattern = numpy.ones((3, 3), dtype=numpy.int8)
logger.debug("Labeling all massifs. This takes some time !!!")
massif_binarization = (self.get_binned_data() > self.get_blurred_data())
if (self.mask is not None) and (not reconstruct):
binned_mask = binning(self.mask.astype(int), self.binning, norm=False)
massif_binarization = numpy.logical_and(massif_binarization, binned_mask == 0)
self._reconstruct_used = reconstruct
labeled_massif, self._number_massif = label(massif_binarization,
pattern)
# TODO: investigate why relabel fails
# relabeled = relabel(labeled_massif, self.get_binned_data(), self.get_blurred_data())
relabeled = labeled_massif
self._labeled_massif = unbinning(relabeled, self.binning, False)
logger.info("Labeling found %s massifs.", self._number_massif)
return self._labeled_massif
@deprecated(reason="switch to pep8 style", replacement="init_valley_size", since_version="0.16.0")
def initValleySize(self):
self.init_valley_size()
@deprecated(reason="switch to PEP8 style", replacement="get_median_data", since_version="0.16.0")
def getMedianData(self):
return self.get_median_data()
@deprecated(reason="switch to PEP8 style", replacement="get_binned_data", since_version="0.16.0")
def getBinnedData(self):
return self.get_binned_data()
@deprecated(reason="switch to PEP8 style", replacement="get_blurred_data", since_version="0.16.0")
def getBluredData(self):
return self.get_blurred_data()
@deprecated(reason="switch to PEP8 style", replacement="get_labeled_massif", since_version="0.16.0")
def getLabeledMassif(self, pattern=None):
return self.get_labeled_massif(pattern)
|