1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#!/usr/bin/env python
# coding: utf-8
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Test suites for bayesian background estimation"""
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "16/10/2020"
import unittest
import numpy
import logging
logger = logging.getLogger(__name__)
from ..utils import bayes
from scipy import interpolate
class TestBayes(unittest.TestCase):
"""Test Azimuthal integration based sparse matrix multiplication methods
Bounding box pixel splitting
"""
def setUp(self):
unittest.TestCase.setUp(self)
self.size = 1000
self.target = 1000
self.outliers = 10
self.big = 10000
self.x = numpy.arange(self.size)
self.noise = numpy.random.poisson(self.target, self.size)
self.sigma = numpy.sqrt(self.noise)
self.peaks = numpy.random.random_integers(0, self.size, self.outliers)
def tearDown(self):
unittest.TestCase.tearDown(self)
self.size = None
self.target = None
self.x = None
self.noise = None
self.sigma = None
self.peaks = None
def test_llk(self):
x, y = bayes.BayesianBackground.test_bayes_llk()
f = interpolate.interp1d(x, y)
self.assertAlmostEqual(f(0), 0, msg="llk 0")
self.assertAlmostEqual(f(-1), -1, msg="llk -1")
self.assertAlmostEqual(f(-2), -4, msg="llk -2")
self.assertAlmostEqual(f(-3), -9, msg="llk -1")
self.assertAlmostEqual(f(-4), -16, msg="llk -2")
self.assertAlmostEqual(f(1), -0.836596197557, msg="llk 1: %s" % (f(1)))
self.assertAlmostEqual(f(0.01), -1e-4, msg="llk 1e-2")
self.assertAlmostEqual(f(8), -4.62302437387, msg="llk 8: %s" % f(8))
def test_background1d(self):
mean = self.noise.mean()
std = self.noise.std()
bg = bayes.background(self.x, self.noise, self.sigma, k=1, npt=2)
self.assertLess(mean - std, bg.min(), "background min")
self.assertGreater(mean + std, bg.max(), "background max")
noise = self.noise[:]
noise[self.outliers] = self.big
bg = bayes.background(self.x, noise, self.sigma, k=1, npt=2)
self.assertLess(mean - std, bg.min(), "background min")
self.assertGreater(mean + std, bg.max(), "background max")
def suite():
loader = unittest.defaultTestLoader.loadTestsFromTestCase
testsuite = unittest.TestSuite()
testsuite.addTest(loader(TestBayes))
return testsuite
if __name__ == '__main__':
runner = unittest.TextTestRunner()
runner.run(suite())
|