1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
#!/usr/bin/env python
# coding: utf-8
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Test suites for pixel splitting scheme validation
see sandbox/debug_split_pixel.py for visual validation
"""
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "01/02/2021"
import unittest
import platform
import numpy
import logging
from .utilstest import UtilsTest
logger = logging.getLogger(__name__)
from ..azimuthalIntegrator import AzimuthalIntegrator
from ..detectors import Detector
from ..utils import mathutil
from ..ext import splitBBox, splitPixel
from ..method_registry import IntegrationMethod
class TestSplitPixel(unittest.TestCase):
@classmethod
def setUpClass(cls):
super(TestSplitPixel, cls).setUpClass()
img = numpy.zeros((512, 512))
for i in range(1, 6):
img[i * 100, i * 100] = 1
det = Detector(1e-4, 1e-4)
det.shape = (512, 512)
ai = AzimuthalIntegrator(1, detector=det)
cls.results = {}
cls.results_ng = {}
for i, meth in enumerate(["numpy", "cython", "splitbbox", "splitpixel", "csr_no", "csr_bbox", "csr_full"]):
cls.results[meth] = ai.integrate1d_legacy(img, 10000, method=meth, unit="2th_deg")
ai.reset()
for k, v in IntegrationMethod._registry.items():
if v.dimension == 1 and v.target is None: # exclude OpenCL engines
cls.results_ng[k] = ai.integrate1d_ng(img, 10000, method=v, unit="r_mm")
@classmethod
def tearDownClass(cls):
super(TestSplitPixel, cls).tearDownClass()
cls.results = None
def test_new_gen_algoritms(self):
"This checks that the pixel splitting scheme gives consistent results"
self.assertGreater(len(self.results_ng), 0, msg="we have some results")
thres = 7
for k1, res1 in self.results_ng.items():
if k1.split == "pseudo":
# Those are half implemented algorithms ... avoid testing them!
continue
for k2, res2 in self.results_ng.items():
if k1 == k2:
continue
if k2.split == "pseudo":
continue
R = mathutil.rwp(res1, res2)
print (f"({k1.split},{k1.algo})/({k2.split},{k2.algo})\t {R}")
if k1.split == k2.split:
self.assertTrue(R < thres, f"{k1}/{k2}")
else:
self.assertTrue(R > thres, f"{k1}/{k2}")
def test_no_split(self):
"""
Validate that all non splitting algo give the same result...
"""
thres = 7
self.assertTrue(mathutil.rwp(self.results["numpy"], self.results["cython"]) < thres, "Cython/Numpy")
self.assertTrue(mathutil.rwp(self.results["csr_no"], self.results["cython"]) < thres, "Cython/CSR")
self.assertTrue(mathutil.rwp(self.results["csr_no"], self.results["numpy"]) < thres, "CSR/numpy")
self.assertTrue(mathutil.rwp(self.results["splitbbox"], self.results["numpy"]) > thres, "splitbbox/Numpy")
self.assertTrue(mathutil.rwp(self.results["splitpixel"], self.results["numpy"]) > thres, "splitpixel/Numpy")
self.assertTrue(mathutil.rwp(self.results["csr_bbox"], self.results["numpy"]) > thres, "csr_bbox/Numpy")
self.assertTrue(mathutil.rwp(self.results["csr_full"], self.results["numpy"]) > thres, "csr_full/Numpy")
self.assertTrue(mathutil.rwp(self.results["splitbbox"], self.results["cython"]) > thres, "splitbbox/cython")
self.assertTrue(mathutil.rwp(self.results["splitpixel"], self.results["cython"]) > thres, "splitpixel/cython")
self.assertTrue(mathutil.rwp(self.results["csr_bbox"], self.results["cython"]) > thres, "csr_bbox/cython")
self.assertTrue(mathutil.rwp(self.results["csr_full"], self.results["cython"]) > thres, "csr_full/cython")
self.assertTrue(mathutil.rwp(self.results["splitbbox"], self.results["csr_no"]) > thres, "splitbbox/csr_no")
self.assertTrue(mathutil.rwp(self.results["splitpixel"], self.results["csr_no"]) > thres, "splitpixel/csr_no")
self.assertTrue(mathutil.rwp(self.results["csr_bbox"], self.results["csr_no"]) > thres, "csr_bbox/csr_no")
self.assertTrue(mathutil.rwp(self.results["csr_full"], self.results["csr_no"]) > thres, "csr_full/csr_no")
def test_split_bbox(self):
"""
Validate that all bbox splitting algo give all the same result...
"""
thres = 7
self.assertTrue(mathutil.rwp(self.results["csr_bbox"], self.results["splitbbox"]) < thres, "csr_bbox/splitbbox")
self.assertTrue(mathutil.rwp(self.results["numpy"], self.results["splitbbox"]) > thres, "numpy/splitbbox")
self.assertTrue(mathutil.rwp(self.results["cython"], self.results["splitbbox"]) > thres, "cython/splitbbox")
self.assertTrue(mathutil.rwp(self.results["splitpixel"], self.results["splitbbox"]) > thres, "splitpixel/splitbbox")
self.assertTrue(mathutil.rwp(self.results["csr_no"], self.results["splitbbox"]) > thres, "csr_no/splitbbox")
self.assertTrue(mathutil.rwp(self.results["csr_full"], self.results["splitbbox"]) > thres, "csr_full/splitbbox")
self.assertTrue(mathutil.rwp(self.results["numpy"], self.results["csr_bbox"]) > thres, "numpy/csr_bbox")
self.assertTrue(mathutil.rwp(self.results["cython"], self.results["csr_bbox"]) > thres, "cython/csr_bbox")
self.assertTrue(mathutil.rwp(self.results["splitpixel"], self.results["csr_bbox"]) > thres, "splitpixel/csr_bbox")
self.assertTrue(mathutil.rwp(self.results["csr_no"], self.results["csr_bbox"]) > thres, "csr_no/csr_bbox")
self.assertTrue(mathutil.rwp(self.results["csr_full"], self.results["csr_bbox"]) > thres, "csr_full/csr_bbox")
def test_split_full(self):
"""
Validate that all full splitting algo give all the same result...
"""
thres = 7
self.assertTrue(mathutil.rwp(self.results["csr_full"], self.results["splitpixel"]) < thres, "csr_full/splitpixel")
self.assertTrue(mathutil.rwp(self.results["numpy"], self.results["splitpixel"]) > thres, "numpy/splitpixel")
self.assertTrue(mathutil.rwp(self.results["cython"], self.results["splitpixel"]) > thres, "cython/splitpixel")
self.assertTrue(mathutil.rwp(self.results["splitbbox"], self.results["splitpixel"]) > thres, "splitpixel/splitpixel")
self.assertTrue(mathutil.rwp(self.results["csr_no"], self.results["splitpixel"]) > thres, "csr_no/splitpixel")
self.assertTrue(mathutil.rwp(self.results["csr_bbox"], self.results["splitpixel"]) > thres, "csr_full/splitpixel")
self.assertTrue(mathutil.rwp(self.results["numpy"], self.results["csr_full"]) > thres, "numpy/csr_full")
self.assertTrue(mathutil.rwp(self.results["cython"], self.results["csr_full"]) > thres, "cython/csr_full")
self.assertTrue(mathutil.rwp(self.results["splitbbox"], self.results["csr_full"]) > thres, "splitpixel/csr_full")
self.assertTrue(mathutil.rwp(self.results["csr_no"], self.results["csr_full"]) > thres, "csr_no/csr_full")
self.assertTrue(mathutil.rwp(self.results["csr_bbox"], self.results["csr_full"]) > thres, "csr_full/csr_full")
class TestSplitBBoxNg(unittest.TestCase):
"""Test the equivalence of the historical SplitBBox with the one propagating
the variance"""
@classmethod
def setUpClass(cls):
super(TestSplitBBoxNg, cls).setUpClass()
det = Detector.factory("Pilatus 100k")
shape = det.shape
# The randomness of the image is not correlated to bug #1021
cls.maxi = 65000
img = numpy.random.randint(0, cls.maxi, numpy.prod(shape))
if platform.machine() in ("i386", "i686", "x86_64") and (tuple.__itemsize__ == 4):
cls.epsilon = 1e-13
else:
cls.epsilon = numpy.finfo(numpy.float64).eps
ai = AzimuthalIntegrator(1, detector=det)
ai.wavelength = 1e-10
tth = ai.center_array(shape, unit="2th_rad", scale=False).ravel()
dtth = ai.delta_array(shape, unit="2th_rad").ravel()
chi = ai.chiArray(shape).ravel()
dchi = ai.deltaChi(shape).ravel()
pos = ai.corner_array(shape, unit="2th_deg", use_cython=True, scale=False)
cls.results = {}
# Legacy implementation:
cls.results["histoBBox2d_legacy"] = splitBBox.histoBBox2d(img,
tth,
dtth,
chi,
dchi,
empty=-1)
cls.results["histoBBox2d_ng"] = splitBBox.histoBBox2d_ng(img,
tth,
dtth,
chi,
dchi,
variance=img,
empty=-1)
# Legacy implementation:
cls.results["fullSplit2D_legacy"] = splitPixel.fullSplit2D(pos,
img,
bins=(100, 36),
empty=-1)
cls.results["fullSplit2D_ng"] = splitPixel.pseudoSplit2D_ng(pos,
img,
bins=(100, 36),
variance=img,
empty=-1)
cls.img = img
@classmethod
def tearDownClass(cls):
super(TestSplitBBoxNg, cls).tearDownClass()
cls.results = None
cls.img = None
def test_split_bbox_2d(self):
# radial position:
tth_legacy = self.results["histoBBox2d_legacy"][1]
tth_ng = self.results["histoBBox2d_ng"].radial
self.assertEqual(abs(tth_legacy - tth_ng).max(), 0, "radial position is the same")
# azimuthal position:
chi_legacy = self.results["histoBBox2d_legacy"][2]
chi_ng = self.results["histoBBox2d_ng"].azimuthal
self.assertEqual(abs(chi_legacy - chi_ng).max(), 0, "azimuthal position is the same")
# pixel count:
count_legacy = self.results["histoBBox2d_legacy"][4]
count_ng = self.results["histoBBox2d_ng"].count
if abs(count_ng).max() == 0:
print(splitBBox)
print(count_legacy)
print(count_ng)
# print("prop", self.results["histoBBox2d_ng"][4])
# print("pos1", self.results["histoBBox2d_ng"][3])
# print("pos0", self.results["histoBBox2d_ng"][2])
# print("err", self.results["histoBBox2d_ng"][1])
# print("int", self.results["histoBBox2d_ng"][0])
self.assertLess(abs(count_legacy - count_ng).max(), self.epsilon, "count is the same")
# same for normalisation ... in this case
count_ng = self.results["histoBBox2d_ng"].normalization
self.assertLess(abs(count_legacy - count_ng).max(), self.epsilon, "norm is old-count")
# Weighted signal:
weighted_legacy = self.results["histoBBox2d_legacy"][3]
signal = self.results["histoBBox2d_ng"].signal
self.assertLess(abs(signal - weighted_legacy).max(), self.maxi * self.epsilon, "Weighted is the same")
# resulting intensity validation
int_legacy = self.results["histoBBox2d_legacy"][0]
int_ng = self.results["histoBBox2d_ng"].intensity
self.assertLess(abs(int_legacy - int_ng).max(), self.epsilon, "intensity is the same")
def test_split_pixel_2d(self):
# radial position:
tth_legacy = self.results["fullSplit2D_legacy"][1]
tth_ng = self.results["fullSplit2D_ng"].radial
self.assertEqual(abs(tth_legacy - tth_ng).max(), 0, "radial position is the same")
# azimuthal position:
chi_legacy = self.results["fullSplit2D_legacy"][2]
chi_ng = self.results["fullSplit2D_ng"].azimuthal
self.assertEqual(abs(chi_legacy - chi_ng).max(), 0, "azimuthal position is the same")
# pixel count:
count_legacy = self.results["fullSplit2D_legacy"][4]
count_ng = self.results["fullSplit2D_ng"].count
self.assertLess(abs(count_legacy - count_ng).mean(), 1, "count is almost the same")
# same for normalisation ... in this case
count_ng = self.results["fullSplit2D_ng"].normalization
self.assertLess(abs(count_legacy - count_ng).mean(), 1, "norm is almost old-count")
# # Weighted signal:
# weighted_legacy = self.results["fullSplit2D_legacy"][3]
# signal = self.results["fullSplit2D_ng"][4]["signal"]
# print(weighted_legacy)
# print(signal)
# print(abs(signal / weighted_legacy).nanmean())
# self.assertEqual(abs(signal - weighted_legacy).max(), 0, "Weighted is the same")
# resulting intensity validation
# int_legacy = self.results["fullSplit2D_legacy"][0]
# int_ng = self.results["histoBBox2d_ng"][0]
# print(int_legacy)
# print(int_ng)
# self.assertEqual(abs(int_legacy - int_ng).max(), 0, "intensity is the same")
def suite():
loader = unittest.defaultTestLoader.loadTestsFromTestCase
testsuite = unittest.TestSuite()
testsuite.addTest(loader(TestSplitPixel))
testsuite.addTest(loader(TestSplitBBoxNg))
return testsuite
if __name__ == '__main__':
runner = unittest.TextTestRunner()
runner.run(suite())
UtilsTest.clean_up()
|