File: ellipse.py

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (143 lines) | stat: -rw-r--r-- 5,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""This modules contains a function to fit without refinement an ellipse
on a set of points ....
"""

__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "21/01/2021"
__status__ = "production"
__docformat__ = 'restructuredtext'

import numpy
import logging
from math import sqrt, atan2, pi
from collections import namedtuple

_logger = logging.getLogger(__name__)

Ellipse = namedtuple("Ellipse", ["center_1", "center_2", "angle", "half_long_axis", "half_short_axis"])


def fit_ellipse(pty, ptx, _allow_delta=True):
    """Fit an ellipse

    Math from 
    https://mathworld.wolfram.com/Ellipse.html #15

    inspired from
    http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html

    :param pty: point coordinates in the slow dimension (y)
    :param ptx: point coordinates in the fast dimension (x)
    :raise ValueError: If the ellipse can't be fitted
    """
    x = ptx[:, numpy.newaxis]
    y = pty[:, numpy.newaxis]
    D = numpy.hstack((x * x, x * y, y * y, x, y, numpy.ones_like(x)))
    S = numpy.dot(D.T, D)
    try:
        inv = numpy.linalg.inv(S)
    except numpy.linalg.LinAlgError:
        if not _allow_delta:
            raise ValueError("Ellipse can't be fitted: singular matrix")
        # Try to do the same with a delta
        delta = 100
        ellipse = fit_ellipse(pty + delta, ptx + delta, _allow_delta=False)
        y0, x0, angle, wlong, wshort = ellipse
        return Ellipse(y0 - delta, x0 - delta, angle, wlong, wshort)

    C = numpy.zeros([6, 6], dtype=numpy.float64)
    C[0, 2] = C[2, 0] = 2.0
    C[1, 1] = -1.0
    E, V = numpy.linalg.eig(numpy.dot(inv, C))

    # First of all, sieve out all infinite and complex eigenvalues and come back to the Real world
    m = numpy.logical_and(numpy.isfinite(E), numpy.isreal(E))
    E, V = E[m].real, V[:, m].real

    # Ensures a>0, invert eigenvectors concerned
    V[:, V[0] < 0] = -V[:, V[0] < 0]
    # See https://mathworld.wolfram.com/Ellipse.html #15
    # Eigenvector must meet constraint (ac - b^2)>0 to be valid.
    A = V[0]
    B = V[1] / 2.0
    C = V[2]
    D = V[3] / 2.0
    F = V[4] / 2.0
    G = V[5]

    # Condition 1: Delta = det((a b d)(b c f)(d f g)) !=0
    Delta = A * (C * G - F * F) - G * B * B + D * (2 * B * F - C * D)
    # Condition 2: J>0
    J = (A * C - B * B)

    # Condition 3: Delta/(A+C)<0, replaces by Delta*(A+C)<0, less warnings
    m = numpy.logical_and(J > 0, Delta != 0)
    m = numpy.logical_and(m, Delta * (A + C) < 0)

    n = numpy.where(m)[0]
    if len(n) == 0:
        raise ValueError("Ellipse can't be fitted: No Eigenvalue match all 3 criteria")
    else:
        n = n[0]
    a = A[n]
    b = B[n]
    c = C[n]
    d = D[n]
    f = F[n]
    g = G[n]

    # Calculation of the center:
    denom = b * b - a * c
    x0 = (c * d - b * f) / denom
    y0 = (a * f - b * d) / denom

    up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g)
    down1 = (b * b - a * c) * ((c - a) * sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a))
    down2 = (b * b - a * c) * ((a - c) * sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a))
    a2 = up / down1
    b2 = up / down2
    if a2 <= 0 or b2 <= 0:
        raise ValueError("Ellipse can't be fitted, negative sqrt")

    res1 = sqrt(a2)
    res2 = sqrt(b2)

    if a == c:
        angle = 0  # we have a circle
    elif res2 > res1:
        res1, res2 = res2, res1
        angle = 0.5 * (pi + atan2(2 * b, (a - c)))
    else:
        angle = 0.5 * (pi + atan2(2 * b, (a - c)))
    return Ellipse(y0, x0, angle, res1, res2)