1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""This modules contains a function to fit without refinement an ellipse
on a set of points ....
"""
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "21/01/2021"
__status__ = "production"
__docformat__ = 'restructuredtext'
import numpy
import logging
from math import sqrt, atan2, pi
from collections import namedtuple
_logger = logging.getLogger(__name__)
Ellipse = namedtuple("Ellipse", ["center_1", "center_2", "angle", "half_long_axis", "half_short_axis"])
def fit_ellipse(pty, ptx, _allow_delta=True):
"""Fit an ellipse
Math from
https://mathworld.wolfram.com/Ellipse.html #15
inspired from
http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html
:param pty: point coordinates in the slow dimension (y)
:param ptx: point coordinates in the fast dimension (x)
:raise ValueError: If the ellipse can't be fitted
"""
x = ptx[:, numpy.newaxis]
y = pty[:, numpy.newaxis]
D = numpy.hstack((x * x, x * y, y * y, x, y, numpy.ones_like(x)))
S = numpy.dot(D.T, D)
try:
inv = numpy.linalg.inv(S)
except numpy.linalg.LinAlgError:
if not _allow_delta:
raise ValueError("Ellipse can't be fitted: singular matrix")
# Try to do the same with a delta
delta = 100
ellipse = fit_ellipse(pty + delta, ptx + delta, _allow_delta=False)
y0, x0, angle, wlong, wshort = ellipse
return Ellipse(y0 - delta, x0 - delta, angle, wlong, wshort)
C = numpy.zeros([6, 6], dtype=numpy.float64)
C[0, 2] = C[2, 0] = 2.0
C[1, 1] = -1.0
E, V = numpy.linalg.eig(numpy.dot(inv, C))
# First of all, sieve out all infinite and complex eigenvalues and come back to the Real world
m = numpy.logical_and(numpy.isfinite(E), numpy.isreal(E))
E, V = E[m].real, V[:, m].real
# Ensures a>0, invert eigenvectors concerned
V[:, V[0] < 0] = -V[:, V[0] < 0]
# See https://mathworld.wolfram.com/Ellipse.html #15
# Eigenvector must meet constraint (ac - b^2)>0 to be valid.
A = V[0]
B = V[1] / 2.0
C = V[2]
D = V[3] / 2.0
F = V[4] / 2.0
G = V[5]
# Condition 1: Delta = det((a b d)(b c f)(d f g)) !=0
Delta = A * (C * G - F * F) - G * B * B + D * (2 * B * F - C * D)
# Condition 2: J>0
J = (A * C - B * B)
# Condition 3: Delta/(A+C)<0, replaces by Delta*(A+C)<0, less warnings
m = numpy.logical_and(J > 0, Delta != 0)
m = numpy.logical_and(m, Delta * (A + C) < 0)
n = numpy.where(m)[0]
if len(n) == 0:
raise ValueError("Ellipse can't be fitted: No Eigenvalue match all 3 criteria")
else:
n = n[0]
a = A[n]
b = B[n]
c = C[n]
d = D[n]
f = F[n]
g = G[n]
# Calculation of the center:
denom = b * b - a * c
x0 = (c * d - b * f) / denom
y0 = (a * f - b * d) / denom
up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g)
down1 = (b * b - a * c) * ((c - a) * sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a))
down2 = (b * b - a * c) * ((a - c) * sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a))
a2 = up / down1
b2 = up / down2
if a2 <= 0 or b2 <= 0:
raise ValueError("Ellipse can't be fitted, negative sqrt")
res1 = sqrt(a2)
res2 = sqrt(b2)
if a == c:
angle = 0 # we have a circle
elif res2 > res1:
res1, res2 = res2, res1
angle = 0.5 * (pi + atan2(2 * b, (a - c)))
else:
angle = 0.5 * (pi + atan2(2 * b, (a - c)))
return Ellipse(y0, x0, angle, res1, res2)
|