File: mathutil.py

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (784 lines) | stat: -rw-r--r-- 27,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""
Utilities, mainly for image treatment
"""

__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "15/01/2021"
__status__ = "production"

import logging
logger = logging.getLogger(__name__)

import math
import numpy
import time
import scipy
from .decorators import deprecated

try:
    from ..ext import relabel as _relabel
except ImportError:
    logger.debug("Backtrace", exc_info=True)
    _relabel = None

EPS32 = (1.0 + numpy.finfo(numpy.float32).eps)


def deg2rad(dd, disc=1):
    """
    Convert degrees to radian in the range [-π->π[ or [0->2π[ 

    :param dd: angle in degrees
    :return: angle in radians in the selected range 
    """
    # range [0:2pi[
    rp = (dd / 180.0) % 2.0
    if disc:  # range [-pi:pi[
        if rp >= 1.0:
            rp -= 2.0
    return rp * math.pi


def expand2d(vect, size2, vertical=True):
    """
    This expands a vector to a 2d-array.

    The result is the same as:

    .. code-block:: python

        if vertical:
            numpy.outer(numpy.ones(size2), vect)
        else:
            numpy.outer(vect, numpy.ones(size2))

    This is a ninja optimization: replace \\*1 with a memcopy, saves 50% of
    time at the ms level.

    :param vect: 1d vector
    :param size2: size of the expanded dimension
    :param vertical: if False the vector is expanded to the first dimension.
        If True, it is expanded to the second dimension.
    """
    size1 = vect.size
    size2 = int(size2)
    if vertical:
        out = numpy.empty((size2, size1), vect.dtype)
        q = vect.reshape(1, -1)
        q.strides = 0, vect.strides[0]
    else:
        out = numpy.empty((size1, size2), vect.dtype)
        q = vect.reshape(-1, 1)
        q.strides = vect.strides[0], 0
    out[:,:] = q
    return out


def gaussian(M, std):
    """
    Return a Gaussian window of length M with standard-deviation std.

    This differs from the scipy.signal.gaussian implementation as:
    - The default for sym=False (needed for gaussian filtering without shift)
    - This implementation is normalized

    :param M: length of the windows (int)
    :param std: standatd deviation sigma

    The FWHM is 2*numpy.sqrt(2 * numpy.pi)*std

    """
    x = numpy.arange(M) - M / 2.0
    return numpy.exp(-(x / std) ** 2 / 2.0) / std / numpy.sqrt(2 * numpy.pi)


def gaussian_filter(input_img, sigma, mode="reflect", cval=0.0, use_scipy=True):
    """
    2-dimensional Gaussian filter implemented with FFT

    :param input_img:    input array to filter
    :type input_img: array-like
    :param sigma: standard deviation for Gaussian kernel.
        The standard deviations of the Gaussian filter are given for each axis as a sequence,
        or as a single number, in which case it is equal for all axes.
    :type sigma: scalar or sequence of scalars
    :param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The ``mode`` parameter determines how the array borders are
        handled, where ``cval`` is the value when mode is equal to
        'constant'. Default is 'reflect'
    :param cval: scalar, optional
        Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
    """
    if use_scipy:
        res = scipy.ndimage.filters.gaussian_filter(input_img, sigma, mode=(mode or "reflect"))
    else:
        if isinstance(sigma, (list, tuple)):
            sigma = (float(sigma[0]), float(sigma[1]))
        else:
            sigma = (float(sigma), float(sigma))
        k0 = int(math.ceil(4.0 * float(sigma[0])))
        k1 = int(math.ceil(4.0 * float(sigma[1])))

        if mode != "wrap":
            input_img = expand(input_img, (k0, k1), mode, cval)
        s0, s1 = input_img.shape
        g0 = gaussian(s0, sigma[0])
        g1 = gaussian(s1, sigma[1])
        g0 = numpy.concatenate((g0[s0 // 2:], g0[:s0 // 2]))  # faster than fftshift
        g1 = numpy.concatenate((g1[s1 // 2:], g1[:s1 // 2]))  # faster than fftshift
        g2 = numpy.outer(g0, g1)
        fftIn = numpy.fft.ifft2(numpy.fft.fft2(input_img) * numpy.fft.fft2(g2).conjugate())
        res = fftIn.real.astype(numpy.float32)
        if mode != "wrap":
            res = res[k0:-k0, k1:-k1]
    return res


def shift(input_img, shift_val):
    """
    Shift an array like  scipy.ndimage.interpolation.shift(input_img, shift_val, mode="wrap", order=0) but faster
    :param input_img: 2d numpy array
    :param shift_val: 2-tuple of integers
    :return: shifted image
    """
    re = numpy.zeros_like(input_img)
    s0, s1 = input_img.shape
    d0 = shift_val[0] % s0
    d1 = shift_val[1] % s1
    r0 = (-d0) % s0
    r1 = (-d1) % s1
    re[d0:, d1:] = input_img[:r0,:r1]
    re[:d0, d1:] = input_img[r0:,:r1]
    re[d0:,:d1] = input_img[:r0, r1:]
    re[:d0,:d1] = input_img[r0:, r1:]
    return re


def dog(s1, s2, shape=None):
    """
    2D difference of gaussian
    typically 1 to 10 parameters
    """
    if shape is None:
        maxi = max(s1, s2) * 5
        u, v = numpy.ogrid[-maxi:maxi + 1, -maxi:maxi + 1]
    else:
        u, v = numpy.ogrid[-shape[0] // 2:shape[0] - shape[0] // 2, -shape[1] // 2:shape[1] - shape[1] // 2]
    r2 = u * u + v * v
    centered = numpy.exp(-r2 / (2. * s1) ** 2) / 2. / numpy.pi / s1 - numpy.exp(-r2 / (2. * s2) ** 2) / 2. / numpy.pi / s2
    return centered


def dog_filter(input_img, sigma1, sigma2, mode="reflect", cval=0.0):
    """
    2-dimensional Difference of Gaussian filter implemented with FFT

    :param input_img:    input_img array to filter
    :type input_img: array-like
    :param sigma: standard deviation for Gaussian kernel.
        The standard deviations of the Gaussian filter are given for each axis as a sequence,
        or as a single number, in which case it is equal for all axes.
    :type sigma: scalar or sequence of scalars
    :param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The ``mode`` parameter determines how the array borders are
        handled, where ``cval`` is the value when mode is equal to
        'constant'. Default is 'reflect'
    :param cval: scalar, optional
            Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
    """

    if 1:  # try:
        sigma = max(sigma1, sigma2)
        if mode != "wrap":
            input_img = expand(input_img, sigma, mode, cval)
        s0, s1 = input_img.shape
        if isinstance(sigma, (list, tuple)):
            k0 = int(math.ceil(4.0 * float(sigma[0])))
            k1 = int(math.ceil(4.0 * float(sigma[1])))
        else:
            k0 = k1 = int(math.ceil(4.0 * float(sigma)))

        res = numpy.fft.ifft2(numpy.fft.fft2(input_img.astype(complex)) *
                              numpy.fft.fft2(shift(dog(sigma1, sigma2, (s0, s1)),
                                                   (s0 // 2, s1 // 2)).astype(complex)).conjugate())
        if mode == "wrap":
            return res
        else:
            return res[k0:-k0, k1:-k1]


def expand(input_img, sigma, mode="constant", cval=0.0):
    """Expand array a with its reflection on boundaries

    :param a: 2D array
    :param sigma: float or 2-tuple of floats.
    :param mode: "constant", "nearest", "reflect" or "mirror"
    :param cval: filling value used for constant, 0.0 by default

    Nota: sigma is the half-width of the kernel. For gaussian convolution it is adviced that it is 4*sigma_of_gaussian
    """
    s0, s1 = input_img.shape
    dtype = input_img.dtype
    if isinstance(sigma, (list, tuple)):
        k0 = int(math.ceil(float(sigma[0])))
        k1 = int(math.ceil(float(sigma[1])))
    else:
        k0 = k1 = int(math.ceil(float(sigma)))
    if k0 > s0 or k1 > s1:
        raise RuntimeError("Makes little sense to apply a kernel (%i,%i)larger than the image (%i,%i)" % (k0, k1, s0, s1))
    output = numpy.zeros((s0 + 2 * k0, s1 + 2 * k1), dtype=dtype) + float(cval)
    output[k0:k0 + s0, k1:k1 + s1] = input_img
    if (mode == "mirror"):
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[-2:-k0 - 2:-1, -2:-k1 - 2:-1]
        output[:k0,:k1] = input_img[k0 - 0:0:-1, k1 - 0:0:-1]
        output[:k0, s1 + k1:] = input_img[k0 - 0:0:-1, s1 - 2: s1 - k1 - 2:-1]
        output[s0 + k0:,:k1] = input_img[s0 - 2: s0 - k0 - 2:-1, k1 - 0:0:-1]
        # 4 sides
        output[k0:k0 + s0,:k1] = input_img[:s0, k1 - 0:0:-1]
        output[:k0, k1:k1 + s1] = input_img[k0 - 0:0:-1,:s1]
        output[-k0:, k1:s1 + k1] = input_img[-2:s0 - k0 - 2:-1,:]
        output[k0:s0 + k0, -k1:] = input_img[:, -2:s1 - k1 - 2:-1]
    elif mode == "reflect":
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[-1:-k0 - 1:-1, -1:-k1 - 1:-1]
        output[:k0,:k1] = input_img[k0 - 1::-1, k1 - 1::-1]
        output[:k0, s1 + k1:] = input_img[k0 - 1::-1, s1 - 1: s1 - k1 - 1:-1]
        output[s0 + k0:,:k1] = input_img[s0 - 1: s0 - k0 - 1:-1, k1 - 1::-1]
        # 4 sides
        output[k0:k0 + s0,:k1] = input_img[:s0, k1 - 1::-1]
        output[:k0, k1:k1 + s1] = input_img[k0 - 1::-1,:s1]
        output[-k0:, k1:s1 + k1] = input_img[:s0 - k0 - 1:-1,:]
        output[k0:s0 + k0, -k1:] = input_img[:,:s1 - k1 - 1:-1]
    elif mode == "nearest":
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[-1, -1]
        output[:k0,:k1] = input_img[0, 0]
        output[:k0, s1 + k1:] = input_img[0, -1]
        output[s0 + k0:,:k1] = input_img[-1, 0]
        # 4 sides
        output[k0:k0 + s0,:k1] = expand2d(input_img[:, 0], k1, False)
        output[:k0, k1:k1 + s1] = expand2d(input_img[0,:], k0)
        output[-k0:, k1:s1 + k1] = expand2d(input_img[-1,:], k0)
        output[k0:s0 + k0, -k1:] = expand2d(input_img[:, -1], k1, False)
    elif mode == "wrap":
        # 4 corners
        output[s0 + k0:, s1 + k1:] = input_img[:k0,:k1]
        output[:k0,:k1] = input_img[-k0:, -k1:]
        output[:k0, s1 + k1:] = input_img[-k0:,:k1]
        output[s0 + k0:,:k1] = input_img[:k0, -k1:]
        # 4 sides
        output[k0:k0 + s0,:k1] = input_img[:, -k1:]
        output[:k0, k1:k1 + s1] = input_img[-k0:,:]
        output[-k0:, k1:s1 + k1] = input_img[:k0,:]
        output[k0:s0 + k0, -k1:] = input_img[:,:k1]
    elif mode == "constant":
        # Nothing to do
        pass

    else:
        raise RuntimeError("Unknown expand mode: %s" % mode)
    return output


def relabel(label, data, blured, max_size=None):
    """
    Relabel limits the number of region in the label array.
    They are ranked relatively to their max(I0)-max(blur(I0))

    :param label: a label array coming out of ``scipy.ndimage.measurement.label``
    :param data: an array containing the raw data
    :param blured: an array containing the blurred data
    :param max_size: the max number of label wanted
    :return: array like label
    """
    if _relabel:
        max_label = label.max()
        _a, _b, _c, d = _relabel.countThem(label, data, blured)
        count = d
        sortCount = count.argsort()
        invSortCount = sortCount[-1::-1]
        invCutInvSortCount = numpy.zeros(max_label + 1, dtype=int)
        for i, j in enumerate(list(invSortCount[:max_size])):
            invCutInvSortCount[j] = i
        return invCutInvSortCount[label]
    else:
        logger.warning("relabel Cython module is not available...")
        return label


def binning(input_img, binsize, norm=True):
    """
    :param input_img: input ndarray
    :param binsize: int or 2-tuple representing the size of the binning
    :param norm: if False, do average instead of sum
    :return: binned input ndarray
    """
    inputSize = input_img.shape
    outputSize = []
    assert(len(inputSize) == 2)
    if isinstance(binsize, int):
        binsize = (binsize, binsize)
    for i, j in zip(inputSize, binsize):
        assert(i % j == 0)
        outputSize.append(i // j)

    if numpy.array(binsize).prod() < 50:
        out = numpy.zeros(tuple(outputSize))
        for i in range(binsize[0]):
            for j in range(binsize[1]):
                out += input_img[i::binsize[0], j::binsize[1]]
    else:
        temp = input_img.copy()
        temp.shape = (outputSize[0], binsize[0], outputSize[1], binsize[1])
        out = temp.sum(axis=3).sum(axis=1)
    if not norm:
        out /= binsize[0] * binsize[1]
    return out


def unbinning(binnedArray, binsize, norm=True):
    """
    :param binnedArray: input ndarray
    :param binsize: 2-tuple representing the size of the binning
    :param norm: if True (default) decrease the intensity by binning factor. If False, it is non-conservative
    :return: unBinned input ndarray
    """
    if isinstance(binsize, int):
        binsize = (binsize, binsize)
    outputShape = []
    for i, j in zip(binnedArray.shape, binsize):
        outputShape.append(i * j)
    out = numpy.zeros(tuple(outputShape), dtype=binnedArray.dtype)
    for i in range(binsize[0]):
        for j in range(binsize[1]):
            out[i::binsize[0], j::binsize[1]] += binnedArray
    if norm:
        out /= binsize[0] * binsize[1]
    return out


@deprecated(replacement="unbinning", since_version="0.15", only_once=True)
def unBinning(*args, **kwargs):
    return unbinning(*args, **kwargs)


def shift_fft(input_img, shift_val, method="fft"):
    """Do shift using FFTs

    Shift an array like  scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity") but faster
    :param input_img: 2d numpy array
    :param shift_val: 2-tuple of float
    :return: shifted image
    """
    if method == "fft":
        d0, d1 = input_img.shape
        v0, v1 = shift_val
        f0 = numpy.fft.ifftshift(numpy.arange(-d0 // 2, d0 // 2))
        f1 = numpy.fft.ifftshift(numpy.arange(-d1 // 2, d1 // 2))
        m1, m0 = numpy.meshgrid(f1, f0)
        e0 = numpy.exp(-2j * numpy.pi * v0 * m0 / float(d0))
        e1 = numpy.exp(-2j * numpy.pi * v1 * m1 / float(d1))
        e = e0 * e1
        out = abs(numpy.fft.ifft2(numpy.fft.fft2(input_img) * e))
    else:
        out = scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity")
    return out


@deprecated(replacement="shift_fft", since_version="0.15", only_once=True)
def shiftFFT(*args, **kwargs):
    return shift_fft(*args, **kwargs)


def maximum_position(img):
    """
    Same as scipy.ndimage.measurements.maximum_position:
    Find the position of the maximum of the values of the array.

    :param img: 2-D image
    :return: 2-tuple of int with the position of the maximum
    """
    maxarg = numpy.argmax(img)
    _, s1 = img.shape
    return (maxarg // s1, maxarg % s1)


def center_of_mass(img):
    """
    Calculate the center of mass of of the array.
    Like scipy.ndimage.measurements.center_of_mass
    :param img: 2-D array
    :return: 2-tuple of float with the center of mass
    """
    d0, d1 = img.shape
    a0, a1 = numpy.ogrid[:d0,:d1]
    img = img.astype("float64")
    img /= img.sum()
    return ((a0 * img).sum(), (a1 * img).sum())


def measure_offset(img1, img2, method="numpy", withLog=False, withCorr=False):
    """
    Measure the actual offset between 2 images
    :param img1: ndarray, first image
    :param img2: ndarray, second image, same shape as img1
    :param withLog: shall we return logs as well ? boolean
    :return: tuple of floats with the offsets
    """
    method = str(method)
    ################################################################################
    # Start convolutions
    ################################################################################
    shape = img1.shape
    logs = []
    assert img2.shape == shape
    t0 = time.perf_counter()
    i1f = numpy.fft.fft2(img1)
    i2f = numpy.fft.fft2(img2)
    res = numpy.fft.ifft2(i1f * i2f.conjugate()).real
    t1 = time.perf_counter()

    ################################################################################
    # END of convolutions
    ################################################################################
    offset1 = maximum_position(res)
    res = shift(res, (shape[0] // 2, shape[1] // 2))
    mean = res.mean(dtype="float64")
    maxi = res.max()
    std = res.std(dtype="float64")
    SN = (maxi - mean) / std
    new = numpy.maximum(numpy.zeros(shape), res - numpy.ones(shape) * (mean + std * SN * 0.9))
    com2 = center_of_mass(new)
    logs.append("MeasureOffset: fine result of the centered image: %s %s " % com2)
    offset2 = ((com2[0] - shape[0] // 2) % shape[0], (com2[1] - shape[1] // 2) % shape[1])
    delta0 = (offset2[0] - offset1[0]) % shape[0]
    delta1 = (offset2[1] - offset1[1]) % shape[1]
    if delta0 > shape[0] // 2:
        delta0 -= shape[0]
    if delta1 > shape[1] // 2:
        delta1 -= shape[1]
    if (abs(delta0) > 2) or (abs(delta1) > 2):
        logs.append("MeasureOffset: Raw offset is %s and refined is %s. Please investigate !" % (offset1, offset2))
    listOffset = list(offset2)
    if listOffset[0] > shape[0] // 2:
        listOffset[0] -= shape[0]
    if listOffset[1] > shape[1] // 2:
        listOffset[1] -= shape[1]
    offset = tuple(listOffset)
    t2 = time.perf_counter()
    logs.append("MeasureOffset: fine result: %s %s" % offset)
    logs.append("MeasureOffset: execution time: %.3fs with %.3fs for FFTs" % (t2 - t0, t1 - t0))
    if withLog:
        if withCorr:
            return offset, logs, new
        else:
            return offset, logs
    else:
        if withCorr:
            return offset, new
        else:
            return offset


def _numpy_backport_percentile(a, q, axis=None, out=None, overwrite_input=False):
    """
    Compute the qth percentile of the data along the specified axis.

    Returns the qth percentile of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    q : float in range of [0,100] (or sequence of floats)
        Percentile to compute which must be between 0 and 100 inclusive.
    axis : int, optional
        Axis along which the percentiles are computed. The default (None)
        is to compute the median along a flattened version of the array.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
       If True, then allow use of memory of input array `a` for
       calculations. The input array will be modified by the call to
       median. This will save memory when you do not need to preserve
       the contents of the input array. Treat the input as undefined,
       but it will probably be fully or partially sorted.
       Default is False. Note that, if `overwrite_input` is True and the
       input is not already an array, an error will be raised.

    Returns
    -------
    pcntile : ndarray
        A new array holding the result (unless `out` is specified, in
        which case that array is returned instead).  If the input contains
        integers, or floats of smaller precision than 64, then the output
        data-type is float64.  Otherwise, the output data-type is the same
        as that of the input.

    See Also
    --------
    mean, median

    Notes
    -----
    Given a vector V of length N, the qth percentile of V is the qth ranked
    value in a sorted copy of V.  A weighted average of the two nearest
    neighbors is used if the normalized ranking does not match q exactly.
    The same as the median if ``q=0.5``, the same as the minimum if ``q=0``
    and the same as the maximum if ``q=1``.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.percentile(a, 50)
    3.5
    >>> np.percentile(a, 0.5, axis=0)
    array([ 6.5,  4.5,  2.5])
    >>> np.percentile(a, 50, axis=1)
    array([ 7.,  2.])

    >>> m = np.percentile(a, 50, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.percentile(a, 50, axis=0, out=m)
    array([ 6.5,  4.5,  2.5])
    >>> m
    array([ 6.5,  4.5,  2.5])

    >>> b = a.copy()
    >>> np.percentile(b, 50, axis=1, overwrite_input=True)
    array([ 7.,  2.])
    >>> assert not np.all(a==b)
    >>> b = a.copy()
    >>> np.percentile(b, 50, axis=None, overwrite_input=True)
    3.5

    """
    a = numpy.asarray(a)

    if q == 0:
        return a.min(axis=axis, out=out)
    elif q == 100:
        return a.max(axis=axis, out=out)

    if overwrite_input:
        if axis is None:
            sorted_list = a.ravel()
            sorted_list.sort()
        else:
            a.sort(axis=axis)
            sorted_list = a
    else:
        sorted_list = numpy.sort(a, axis=axis)
    if axis is None:
        axis = 0

    return _compute_qth_percentile(sorted_list, q, axis, out)


def _compute_qth_percentile(sorted_list, q, axis, out):
    """
    Handle sequence of q's without calling sort multiple times
    """
    if not numpy.isscalar(q):
        p = [_compute_qth_percentile(sorted_list, qi, axis, None)
             for qi in q]

        if out is not None:
            out.flat = p

        return p

    q = q / 100.0
    if (q < 0) or (q > 1):
        raise ValueError("percentile must be either in the range [0,100]")

    indexer = [slice(None)] * sorted_list.ndim
    Nx = sorted_list.shape[axis]
    index = q * (Nx - 1)
    i = int(index)
    if i == index:
        indexer[axis] = slice(i, i + 1)
        weights = numpy.array(1)
        sumval = 1.0
    else:
        indexer[axis] = slice(i, i + 2)
        j = i + 1
        weights = numpy.array([(j - index), (index - i)], float)
        wshape = [1] * sorted_list.ndim
        wshape[axis] = 2
        weights.shape = wshape
        sumval = weights.sum()

    # Use add.reduce in both cases to coerce data type as well as
    #   check and use out array.
    return numpy.add.reduce(sorted_list[indexer] * weights, axis=axis, out=out) / sumval


try:
    from numpy import percentile
except ImportError:
    # backport percentile from numpy 1.6.2
    logger.debug("Backtrace", exc_info=True)
    percentile = _numpy_backport_percentile


def round_fft(N):
    """
    This function returns the integer >=N for which size the Fourier analysis is faster (fron the FFT point of view)

    Credit: Alessandro Mirone, ESRF, 2012

    :param N: interger on which one would like to do a Fourier transform
    :return: integer with a better choice
    """
    FA, FB, FC, FD, FE, FFF = 2, 3, 5, 7, 11, 13
    DIFF = 9999999999
    RES = 1
    AA = 1
    for _ in range(int(math.log(N) / math.log(FA) + 2)):
        BB = AA
        for _ in range(int(math.log(N) / math.log(FB) + 2)):
            CC = BB

            for _ in range(int(math.log(N) / math.log(FC) + 2)):
                DD = CC

                for _ in range(int(math.log(N) / math.log(FD) + 2)):
                    EE = DD

                    for E in range(2):
                        FF = EE

                        for _ in range(2 - E):
                            if FF >= N and DIFF > abs(N - FF):
                                DIFF = abs(N - FF)
                                RES = FF
                            if FF > N:
                                break
                            FF = FF * FFF
                        if EE > N:
                            break
                        EE = EE * FE
                    if DD > N:
                        break
                    DD = DD * FD
                if CC > N:
                    break
                CC = CC * FC
            if BB > N:
                break
            BB = BB * FB
        if AA > N:
            break
        AA = AA * FA
    return RES


@deprecated(replacement="round_fft", since_version="0.15", only_once=True)
def roundfft(*args, **kwargs):
    return round_fft(*args, **kwargs)


def is_far_from_group(pt, lst_pts, d2):
    """
    Tells if a point is far from a group of points, distance greater than d2 (distance squared)

    :param pt: point of interest
    :param lst_pts: list of points
    :param d2: minimum distance squarred
    :return: True If the point is far from all others.

    """
    for apt in lst_pts:
        dsq = sum((i - j) * (i - j) for i, j in zip(apt, pt))
        if dsq <= d2:
            return False
    return True


def rwp(obt, ref):
    """Compute :math:`\\sqrt{\\sum \\frac{4\\cdot(obt-ref)^2}{(obt + ref)^2}}`.

    This is done for symmetry reason between obt and ref

    :param obt: obtained data
    :type obt: 2-list of array of the same size
    :param obt: reference data
    :type obt: 2-list of array of the same size
    :return:  Rwp value, lineary interpolated
    """
    ref0, ref1 = ref[:2]
    obt0, obt1 = obt[:2]
    big0 = numpy.concatenate((obt0, ref0))
    big0.sort()
    big0 = numpy.unique(big0)
    big_ref = numpy.interp(big0, ref0, ref1, 0.0, 0.0)
    big_obt = numpy.interp(big0, obt0, obt1, 0.0, 0.0)
    big_mean = (big_ref + big_obt) / 2.0
    big_delta = (big_ref - big_obt)
    non_null = abs(big_mean) > 1e-10
    return numpy.sqrt(((big_delta[non_null]) ** 2 / ((big_mean[non_null]) ** 2)).sum())


def chi_square(obt, ref):
    """Compute :math:`\\sqrt{\\sum \\frac{4\\cdot(obt-ref)^2}{(obt + ref)^2}}`.

    This is done for symmetry reason between obt and ref

    :param obt: obtained data
    :type obt: 3-tuple of array of the same size containing position, intensity, variance
    :param obt: reference data
    :type obt: 3-tuple of array of the same size containing position, intensity, variance
    :return:  Chi² value, lineary interpolated
    """
    ref_pos, ref_int, ref_std = ref
    obt_pos, obt_int, obt_std = obt
    big_pos = numpy.concatenate((ref_pos, obt_pos))
    big_pos.sort()
    big_pos = numpy.unique(big_pos)
    big_ref_int = numpy.interp(big_pos, ref_pos, ref_int, 0.0, 0.0)
    big_obt_int = numpy.interp(big_pos, obt_pos, obt_int, 0.0, 0.0)
    big_delta_int = (big_ref_int - big_obt_int)

    big_ref_var = numpy.interp(big_pos, ref_pos, ref_std, 0.0, 0.0) ** 2
    big_obt_var = numpy.interp(big_pos, obt_pos, obt_std, 0.0, 0.0) ** 2
    big_variance = (big_ref_var + big_obt_var) / 2.0
    non_null = abs(big_variance) > 1e-10
    return (big_delta_int[non_null] ** 2 / big_variance[non_null]).mean()