1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
Utilities, mainly for image treatment
"""
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "15/01/2021"
__status__ = "production"
import logging
logger = logging.getLogger(__name__)
import math
import numpy
import time
import scipy
from .decorators import deprecated
try:
from ..ext import relabel as _relabel
except ImportError:
logger.debug("Backtrace", exc_info=True)
_relabel = None
EPS32 = (1.0 + numpy.finfo(numpy.float32).eps)
def deg2rad(dd, disc=1):
"""
Convert degrees to radian in the range [-π->π[ or [0->2π[
:param dd: angle in degrees
:return: angle in radians in the selected range
"""
# range [0:2pi[
rp = (dd / 180.0) % 2.0
if disc: # range [-pi:pi[
if rp >= 1.0:
rp -= 2.0
return rp * math.pi
def expand2d(vect, size2, vertical=True):
"""
This expands a vector to a 2d-array.
The result is the same as:
.. code-block:: python
if vertical:
numpy.outer(numpy.ones(size2), vect)
else:
numpy.outer(vect, numpy.ones(size2))
This is a ninja optimization: replace \\*1 with a memcopy, saves 50% of
time at the ms level.
:param vect: 1d vector
:param size2: size of the expanded dimension
:param vertical: if False the vector is expanded to the first dimension.
If True, it is expanded to the second dimension.
"""
size1 = vect.size
size2 = int(size2)
if vertical:
out = numpy.empty((size2, size1), vect.dtype)
q = vect.reshape(1, -1)
q.strides = 0, vect.strides[0]
else:
out = numpy.empty((size1, size2), vect.dtype)
q = vect.reshape(-1, 1)
q.strides = vect.strides[0], 0
out[:,:] = q
return out
def gaussian(M, std):
"""
Return a Gaussian window of length M with standard-deviation std.
This differs from the scipy.signal.gaussian implementation as:
- The default for sym=False (needed for gaussian filtering without shift)
- This implementation is normalized
:param M: length of the windows (int)
:param std: standatd deviation sigma
The FWHM is 2*numpy.sqrt(2 * numpy.pi)*std
"""
x = numpy.arange(M) - M / 2.0
return numpy.exp(-(x / std) ** 2 / 2.0) / std / numpy.sqrt(2 * numpy.pi)
def gaussian_filter(input_img, sigma, mode="reflect", cval=0.0, use_scipy=True):
"""
2-dimensional Gaussian filter implemented with FFT
:param input_img: input array to filter
:type input_img: array-like
:param sigma: standard deviation for Gaussian kernel.
The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes.
:type sigma: scalar or sequence of scalars
:param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
The ``mode`` parameter determines how the array borders are
handled, where ``cval`` is the value when mode is equal to
'constant'. Default is 'reflect'
:param cval: scalar, optional
Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
"""
if use_scipy:
res = scipy.ndimage.filters.gaussian_filter(input_img, sigma, mode=(mode or "reflect"))
else:
if isinstance(sigma, (list, tuple)):
sigma = (float(sigma[0]), float(sigma[1]))
else:
sigma = (float(sigma), float(sigma))
k0 = int(math.ceil(4.0 * float(sigma[0])))
k1 = int(math.ceil(4.0 * float(sigma[1])))
if mode != "wrap":
input_img = expand(input_img, (k0, k1), mode, cval)
s0, s1 = input_img.shape
g0 = gaussian(s0, sigma[0])
g1 = gaussian(s1, sigma[1])
g0 = numpy.concatenate((g0[s0 // 2:], g0[:s0 // 2])) # faster than fftshift
g1 = numpy.concatenate((g1[s1 // 2:], g1[:s1 // 2])) # faster than fftshift
g2 = numpy.outer(g0, g1)
fftIn = numpy.fft.ifft2(numpy.fft.fft2(input_img) * numpy.fft.fft2(g2).conjugate())
res = fftIn.real.astype(numpy.float32)
if mode != "wrap":
res = res[k0:-k0, k1:-k1]
return res
def shift(input_img, shift_val):
"""
Shift an array like scipy.ndimage.interpolation.shift(input_img, shift_val, mode="wrap", order=0) but faster
:param input_img: 2d numpy array
:param shift_val: 2-tuple of integers
:return: shifted image
"""
re = numpy.zeros_like(input_img)
s0, s1 = input_img.shape
d0 = shift_val[0] % s0
d1 = shift_val[1] % s1
r0 = (-d0) % s0
r1 = (-d1) % s1
re[d0:, d1:] = input_img[:r0,:r1]
re[:d0, d1:] = input_img[r0:,:r1]
re[d0:,:d1] = input_img[:r0, r1:]
re[:d0,:d1] = input_img[r0:, r1:]
return re
def dog(s1, s2, shape=None):
"""
2D difference of gaussian
typically 1 to 10 parameters
"""
if shape is None:
maxi = max(s1, s2) * 5
u, v = numpy.ogrid[-maxi:maxi + 1, -maxi:maxi + 1]
else:
u, v = numpy.ogrid[-shape[0] // 2:shape[0] - shape[0] // 2, -shape[1] // 2:shape[1] - shape[1] // 2]
r2 = u * u + v * v
centered = numpy.exp(-r2 / (2. * s1) ** 2) / 2. / numpy.pi / s1 - numpy.exp(-r2 / (2. * s2) ** 2) / 2. / numpy.pi / s2
return centered
def dog_filter(input_img, sigma1, sigma2, mode="reflect", cval=0.0):
"""
2-dimensional Difference of Gaussian filter implemented with FFT
:param input_img: input_img array to filter
:type input_img: array-like
:param sigma: standard deviation for Gaussian kernel.
The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes.
:type sigma: scalar or sequence of scalars
:param mode: {'reflect','constant','nearest','mirror', 'wrap'}, optional
The ``mode`` parameter determines how the array borders are
handled, where ``cval`` is the value when mode is equal to
'constant'. Default is 'reflect'
:param cval: scalar, optional
Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0
"""
if 1: # try:
sigma = max(sigma1, sigma2)
if mode != "wrap":
input_img = expand(input_img, sigma, mode, cval)
s0, s1 = input_img.shape
if isinstance(sigma, (list, tuple)):
k0 = int(math.ceil(4.0 * float(sigma[0])))
k1 = int(math.ceil(4.0 * float(sigma[1])))
else:
k0 = k1 = int(math.ceil(4.0 * float(sigma)))
res = numpy.fft.ifft2(numpy.fft.fft2(input_img.astype(complex)) *
numpy.fft.fft2(shift(dog(sigma1, sigma2, (s0, s1)),
(s0 // 2, s1 // 2)).astype(complex)).conjugate())
if mode == "wrap":
return res
else:
return res[k0:-k0, k1:-k1]
def expand(input_img, sigma, mode="constant", cval=0.0):
"""Expand array a with its reflection on boundaries
:param a: 2D array
:param sigma: float or 2-tuple of floats.
:param mode: "constant", "nearest", "reflect" or "mirror"
:param cval: filling value used for constant, 0.0 by default
Nota: sigma is the half-width of the kernel. For gaussian convolution it is adviced that it is 4*sigma_of_gaussian
"""
s0, s1 = input_img.shape
dtype = input_img.dtype
if isinstance(sigma, (list, tuple)):
k0 = int(math.ceil(float(sigma[0])))
k1 = int(math.ceil(float(sigma[1])))
else:
k0 = k1 = int(math.ceil(float(sigma)))
if k0 > s0 or k1 > s1:
raise RuntimeError("Makes little sense to apply a kernel (%i,%i)larger than the image (%i,%i)" % (k0, k1, s0, s1))
output = numpy.zeros((s0 + 2 * k0, s1 + 2 * k1), dtype=dtype) + float(cval)
output[k0:k0 + s0, k1:k1 + s1] = input_img
if (mode == "mirror"):
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[-2:-k0 - 2:-1, -2:-k1 - 2:-1]
output[:k0,:k1] = input_img[k0 - 0:0:-1, k1 - 0:0:-1]
output[:k0, s1 + k1:] = input_img[k0 - 0:0:-1, s1 - 2: s1 - k1 - 2:-1]
output[s0 + k0:,:k1] = input_img[s0 - 2: s0 - k0 - 2:-1, k1 - 0:0:-1]
# 4 sides
output[k0:k0 + s0,:k1] = input_img[:s0, k1 - 0:0:-1]
output[:k0, k1:k1 + s1] = input_img[k0 - 0:0:-1,:s1]
output[-k0:, k1:s1 + k1] = input_img[-2:s0 - k0 - 2:-1,:]
output[k0:s0 + k0, -k1:] = input_img[:, -2:s1 - k1 - 2:-1]
elif mode == "reflect":
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[-1:-k0 - 1:-1, -1:-k1 - 1:-1]
output[:k0,:k1] = input_img[k0 - 1::-1, k1 - 1::-1]
output[:k0, s1 + k1:] = input_img[k0 - 1::-1, s1 - 1: s1 - k1 - 1:-1]
output[s0 + k0:,:k1] = input_img[s0 - 1: s0 - k0 - 1:-1, k1 - 1::-1]
# 4 sides
output[k0:k0 + s0,:k1] = input_img[:s0, k1 - 1::-1]
output[:k0, k1:k1 + s1] = input_img[k0 - 1::-1,:s1]
output[-k0:, k1:s1 + k1] = input_img[:s0 - k0 - 1:-1,:]
output[k0:s0 + k0, -k1:] = input_img[:,:s1 - k1 - 1:-1]
elif mode == "nearest":
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[-1, -1]
output[:k0,:k1] = input_img[0, 0]
output[:k0, s1 + k1:] = input_img[0, -1]
output[s0 + k0:,:k1] = input_img[-1, 0]
# 4 sides
output[k0:k0 + s0,:k1] = expand2d(input_img[:, 0], k1, False)
output[:k0, k1:k1 + s1] = expand2d(input_img[0,:], k0)
output[-k0:, k1:s1 + k1] = expand2d(input_img[-1,:], k0)
output[k0:s0 + k0, -k1:] = expand2d(input_img[:, -1], k1, False)
elif mode == "wrap":
# 4 corners
output[s0 + k0:, s1 + k1:] = input_img[:k0,:k1]
output[:k0,:k1] = input_img[-k0:, -k1:]
output[:k0, s1 + k1:] = input_img[-k0:,:k1]
output[s0 + k0:,:k1] = input_img[:k0, -k1:]
# 4 sides
output[k0:k0 + s0,:k1] = input_img[:, -k1:]
output[:k0, k1:k1 + s1] = input_img[-k0:,:]
output[-k0:, k1:s1 + k1] = input_img[:k0,:]
output[k0:s0 + k0, -k1:] = input_img[:,:k1]
elif mode == "constant":
# Nothing to do
pass
else:
raise RuntimeError("Unknown expand mode: %s" % mode)
return output
def relabel(label, data, blured, max_size=None):
"""
Relabel limits the number of region in the label array.
They are ranked relatively to their max(I0)-max(blur(I0))
:param label: a label array coming out of ``scipy.ndimage.measurement.label``
:param data: an array containing the raw data
:param blured: an array containing the blurred data
:param max_size: the max number of label wanted
:return: array like label
"""
if _relabel:
max_label = label.max()
_a, _b, _c, d = _relabel.countThem(label, data, blured)
count = d
sortCount = count.argsort()
invSortCount = sortCount[-1::-1]
invCutInvSortCount = numpy.zeros(max_label + 1, dtype=int)
for i, j in enumerate(list(invSortCount[:max_size])):
invCutInvSortCount[j] = i
return invCutInvSortCount[label]
else:
logger.warning("relabel Cython module is not available...")
return label
def binning(input_img, binsize, norm=True):
"""
:param input_img: input ndarray
:param binsize: int or 2-tuple representing the size of the binning
:param norm: if False, do average instead of sum
:return: binned input ndarray
"""
inputSize = input_img.shape
outputSize = []
assert(len(inputSize) == 2)
if isinstance(binsize, int):
binsize = (binsize, binsize)
for i, j in zip(inputSize, binsize):
assert(i % j == 0)
outputSize.append(i // j)
if numpy.array(binsize).prod() < 50:
out = numpy.zeros(tuple(outputSize))
for i in range(binsize[0]):
for j in range(binsize[1]):
out += input_img[i::binsize[0], j::binsize[1]]
else:
temp = input_img.copy()
temp.shape = (outputSize[0], binsize[0], outputSize[1], binsize[1])
out = temp.sum(axis=3).sum(axis=1)
if not norm:
out /= binsize[0] * binsize[1]
return out
def unbinning(binnedArray, binsize, norm=True):
"""
:param binnedArray: input ndarray
:param binsize: 2-tuple representing the size of the binning
:param norm: if True (default) decrease the intensity by binning factor. If False, it is non-conservative
:return: unBinned input ndarray
"""
if isinstance(binsize, int):
binsize = (binsize, binsize)
outputShape = []
for i, j in zip(binnedArray.shape, binsize):
outputShape.append(i * j)
out = numpy.zeros(tuple(outputShape), dtype=binnedArray.dtype)
for i in range(binsize[0]):
for j in range(binsize[1]):
out[i::binsize[0], j::binsize[1]] += binnedArray
if norm:
out /= binsize[0] * binsize[1]
return out
@deprecated(replacement="unbinning", since_version="0.15", only_once=True)
def unBinning(*args, **kwargs):
return unbinning(*args, **kwargs)
def shift_fft(input_img, shift_val, method="fft"):
"""Do shift using FFTs
Shift an array like scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity") but faster
:param input_img: 2d numpy array
:param shift_val: 2-tuple of float
:return: shifted image
"""
if method == "fft":
d0, d1 = input_img.shape
v0, v1 = shift_val
f0 = numpy.fft.ifftshift(numpy.arange(-d0 // 2, d0 // 2))
f1 = numpy.fft.ifftshift(numpy.arange(-d1 // 2, d1 // 2))
m1, m0 = numpy.meshgrid(f1, f0)
e0 = numpy.exp(-2j * numpy.pi * v0 * m0 / float(d0))
e1 = numpy.exp(-2j * numpy.pi * v1 * m1 / float(d1))
e = e0 * e1
out = abs(numpy.fft.ifft2(numpy.fft.fft2(input_img) * e))
else:
out = scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity")
return out
@deprecated(replacement="shift_fft", since_version="0.15", only_once=True)
def shiftFFT(*args, **kwargs):
return shift_fft(*args, **kwargs)
def maximum_position(img):
"""
Same as scipy.ndimage.measurements.maximum_position:
Find the position of the maximum of the values of the array.
:param img: 2-D image
:return: 2-tuple of int with the position of the maximum
"""
maxarg = numpy.argmax(img)
_, s1 = img.shape
return (maxarg // s1, maxarg % s1)
def center_of_mass(img):
"""
Calculate the center of mass of of the array.
Like scipy.ndimage.measurements.center_of_mass
:param img: 2-D array
:return: 2-tuple of float with the center of mass
"""
d0, d1 = img.shape
a0, a1 = numpy.ogrid[:d0,:d1]
img = img.astype("float64")
img /= img.sum()
return ((a0 * img).sum(), (a1 * img).sum())
def measure_offset(img1, img2, method="numpy", withLog=False, withCorr=False):
"""
Measure the actual offset between 2 images
:param img1: ndarray, first image
:param img2: ndarray, second image, same shape as img1
:param withLog: shall we return logs as well ? boolean
:return: tuple of floats with the offsets
"""
method = str(method)
################################################################################
# Start convolutions
################################################################################
shape = img1.shape
logs = []
assert img2.shape == shape
t0 = time.perf_counter()
i1f = numpy.fft.fft2(img1)
i2f = numpy.fft.fft2(img2)
res = numpy.fft.ifft2(i1f * i2f.conjugate()).real
t1 = time.perf_counter()
################################################################################
# END of convolutions
################################################################################
offset1 = maximum_position(res)
res = shift(res, (shape[0] // 2, shape[1] // 2))
mean = res.mean(dtype="float64")
maxi = res.max()
std = res.std(dtype="float64")
SN = (maxi - mean) / std
new = numpy.maximum(numpy.zeros(shape), res - numpy.ones(shape) * (mean + std * SN * 0.9))
com2 = center_of_mass(new)
logs.append("MeasureOffset: fine result of the centered image: %s %s " % com2)
offset2 = ((com2[0] - shape[0] // 2) % shape[0], (com2[1] - shape[1] // 2) % shape[1])
delta0 = (offset2[0] - offset1[0]) % shape[0]
delta1 = (offset2[1] - offset1[1]) % shape[1]
if delta0 > shape[0] // 2:
delta0 -= shape[0]
if delta1 > shape[1] // 2:
delta1 -= shape[1]
if (abs(delta0) > 2) or (abs(delta1) > 2):
logs.append("MeasureOffset: Raw offset is %s and refined is %s. Please investigate !" % (offset1, offset2))
listOffset = list(offset2)
if listOffset[0] > shape[0] // 2:
listOffset[0] -= shape[0]
if listOffset[1] > shape[1] // 2:
listOffset[1] -= shape[1]
offset = tuple(listOffset)
t2 = time.perf_counter()
logs.append("MeasureOffset: fine result: %s %s" % offset)
logs.append("MeasureOffset: execution time: %.3fs with %.3fs for FFTs" % (t2 - t0, t1 - t0))
if withLog:
if withCorr:
return offset, logs, new
else:
return offset, logs
else:
if withCorr:
return offset, new
else:
return offset
def _numpy_backport_percentile(a, q, axis=None, out=None, overwrite_input=False):
"""
Compute the qth percentile of the data along the specified axis.
Returns the qth percentile of the array elements.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
q : float in range of [0,100] (or sequence of floats)
Percentile to compute which must be between 0 and 100 inclusive.
axis : int, optional
Axis along which the percentiles are computed. The default (None)
is to compute the median along a flattened version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array `a` for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted.
Default is False. Note that, if `overwrite_input` is True and the
input is not already an array, an error will be raised.
Returns
-------
pcntile : ndarray
A new array holding the result (unless `out` is specified, in
which case that array is returned instead). If the input contains
integers, or floats of smaller precision than 64, then the output
data-type is float64. Otherwise, the output data-type is the same
as that of the input.
See Also
--------
mean, median
Notes
-----
Given a vector V of length N, the qth percentile of V is the qth ranked
value in a sorted copy of V. A weighted average of the two nearest
neighbors is used if the normalized ranking does not match q exactly.
The same as the median if ``q=0.5``, the same as the minimum if ``q=0``
and the same as the maximum if ``q=1``.
Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 0.5, axis=0)
array([ 6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1)
array([ 7., 2.])
>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.percentile(b, 50, axis=None, overwrite_input=True)
3.5
"""
a = numpy.asarray(a)
if q == 0:
return a.min(axis=axis, out=out)
elif q == 100:
return a.max(axis=axis, out=out)
if overwrite_input:
if axis is None:
sorted_list = a.ravel()
sorted_list.sort()
else:
a.sort(axis=axis)
sorted_list = a
else:
sorted_list = numpy.sort(a, axis=axis)
if axis is None:
axis = 0
return _compute_qth_percentile(sorted_list, q, axis, out)
def _compute_qth_percentile(sorted_list, q, axis, out):
"""
Handle sequence of q's without calling sort multiple times
"""
if not numpy.isscalar(q):
p = [_compute_qth_percentile(sorted_list, qi, axis, None)
for qi in q]
if out is not None:
out.flat = p
return p
q = q / 100.0
if (q < 0) or (q > 1):
raise ValueError("percentile must be either in the range [0,100]")
indexer = [slice(None)] * sorted_list.ndim
Nx = sorted_list.shape[axis]
index = q * (Nx - 1)
i = int(index)
if i == index:
indexer[axis] = slice(i, i + 1)
weights = numpy.array(1)
sumval = 1.0
else:
indexer[axis] = slice(i, i + 2)
j = i + 1
weights = numpy.array([(j - index), (index - i)], float)
wshape = [1] * sorted_list.ndim
wshape[axis] = 2
weights.shape = wshape
sumval = weights.sum()
# Use add.reduce in both cases to coerce data type as well as
# check and use out array.
return numpy.add.reduce(sorted_list[indexer] * weights, axis=axis, out=out) / sumval
try:
from numpy import percentile
except ImportError:
# backport percentile from numpy 1.6.2
logger.debug("Backtrace", exc_info=True)
percentile = _numpy_backport_percentile
def round_fft(N):
"""
This function returns the integer >=N for which size the Fourier analysis is faster (fron the FFT point of view)
Credit: Alessandro Mirone, ESRF, 2012
:param N: interger on which one would like to do a Fourier transform
:return: integer with a better choice
"""
FA, FB, FC, FD, FE, FFF = 2, 3, 5, 7, 11, 13
DIFF = 9999999999
RES = 1
AA = 1
for _ in range(int(math.log(N) / math.log(FA) + 2)):
BB = AA
for _ in range(int(math.log(N) / math.log(FB) + 2)):
CC = BB
for _ in range(int(math.log(N) / math.log(FC) + 2)):
DD = CC
for _ in range(int(math.log(N) / math.log(FD) + 2)):
EE = DD
for E in range(2):
FF = EE
for _ in range(2 - E):
if FF >= N and DIFF > abs(N - FF):
DIFF = abs(N - FF)
RES = FF
if FF > N:
break
FF = FF * FFF
if EE > N:
break
EE = EE * FE
if DD > N:
break
DD = DD * FD
if CC > N:
break
CC = CC * FC
if BB > N:
break
BB = BB * FB
if AA > N:
break
AA = AA * FA
return RES
@deprecated(replacement="round_fft", since_version="0.15", only_once=True)
def roundfft(*args, **kwargs):
return round_fft(*args, **kwargs)
def is_far_from_group(pt, lst_pts, d2):
"""
Tells if a point is far from a group of points, distance greater than d2 (distance squared)
:param pt: point of interest
:param lst_pts: list of points
:param d2: minimum distance squarred
:return: True If the point is far from all others.
"""
for apt in lst_pts:
dsq = sum((i - j) * (i - j) for i, j in zip(apt, pt))
if dsq <= d2:
return False
return True
def rwp(obt, ref):
"""Compute :math:`\\sqrt{\\sum \\frac{4\\cdot(obt-ref)^2}{(obt + ref)^2}}`.
This is done for symmetry reason between obt and ref
:param obt: obtained data
:type obt: 2-list of array of the same size
:param obt: reference data
:type obt: 2-list of array of the same size
:return: Rwp value, lineary interpolated
"""
ref0, ref1 = ref[:2]
obt0, obt1 = obt[:2]
big0 = numpy.concatenate((obt0, ref0))
big0.sort()
big0 = numpy.unique(big0)
big_ref = numpy.interp(big0, ref0, ref1, 0.0, 0.0)
big_obt = numpy.interp(big0, obt0, obt1, 0.0, 0.0)
big_mean = (big_ref + big_obt) / 2.0
big_delta = (big_ref - big_obt)
non_null = abs(big_mean) > 1e-10
return numpy.sqrt(((big_delta[non_null]) ** 2 / ((big_mean[non_null]) ** 2)).sum())
def chi_square(obt, ref):
"""Compute :math:`\\sqrt{\\sum \\frac{4\\cdot(obt-ref)^2}{(obt + ref)^2}}`.
This is done for symmetry reason between obt and ref
:param obt: obtained data
:type obt: 3-tuple of array of the same size containing position, intensity, variance
:param obt: reference data
:type obt: 3-tuple of array of the same size containing position, intensity, variance
:return: Chi² value, lineary interpolated
"""
ref_pos, ref_int, ref_std = ref
obt_pos, obt_int, obt_std = obt
big_pos = numpy.concatenate((ref_pos, obt_pos))
big_pos.sort()
big_pos = numpy.unique(big_pos)
big_ref_int = numpy.interp(big_pos, ref_pos, ref_int, 0.0, 0.0)
big_obt_int = numpy.interp(big_pos, obt_pos, obt_int, 0.0, 0.0)
big_delta_int = (big_ref_int - big_obt_int)
big_ref_var = numpy.interp(big_pos, ref_pos, ref_std, 0.0, 0.0) ** 2
big_obt_var = numpy.interp(big_pos, obt_pos, obt_std, 0.0, 0.0) ** 2
big_variance = (big_ref_var + big_obt_var) / 2.0
non_null = abs(big_variance) > 1e-10
return (big_delta_int[non_null] ** 2 / big_variance[non_null]).mean()
|