1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""This module contains the Worker class:
A tool able to perform azimuthal integration with:
additional saving capabilities like
- save as 2/3D structure in a HDF5 File
- read from HDF5 files
Aims at being integrated into a plugin like LImA or as model for the GUI
The configuration of this class is mainly done via a dictionary transmitted as a JSON string:
Here are the valid keys:
- "dist"
- "poni1"
- "poni2"
- "rot1"
- "rot3"
- "rot2"
- "pixel1"
- "pixel2"
- "splineFile"
- "wavelength"
- "poni" #path of the file
- "chi_discontinuity_at_0"
- "do_mask"
- "do_dark"
- "do_azimuthal_range"
- "do_flat"
- "do_2D"
- "azimuth_range_min"
- "azimuth_range_max"
- "polarization_factor"
- "nbpt_rad"
- "do_solid_angle"
- "do_radial_range"
- "do_poisson"
- "delta_dummy"
- "nbpt_azim"
- "flat_field"
- "radial_range_min"
- "dark_current"
- "do_polarization"
- "mask_file"
- "detector"
- "unit"
- "radial_range_max"
- "val_dummy"
- "do_dummy"
- "method"
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "14/01/2021"
__status__ = "development"
import threading
import os.path
import logging
import json
import numpy
from collections import OrderedDict
logger = logging.getLogger(__name__)
from . import average
from . import method_registry
from .azimuthalIntegrator import AzimuthalIntegrator
from .distortion import Distortion
from . import units
from .io import integration_config
import pyFAI.io.image
from .engines.preproc import preproc as preproc_numpy
try:
import numexpr
except ImportError as err:
logger.warning("Unable to import Cython version of preproc: %s", err)
USE_NUMEXPR = False
else:
USE_NUMEXPR = True
try:
from .ext.preproc import preproc
except ImportError as err:
logger.warning("Unable to import Cython version of preproc: %s", err)
preproc = preproc_numpy
USE_CYTHON = False
else:
USE_CYTHON = True
def make_ai(config, consume_keys=False):
"""Create an Azimuthal integrator from the configuration.
:param config: Key-value dictionary with all parameters
:param bool consume_keys: If true the keys from the dictionary will be
consumed when used.
:return: A configured (but uninitialized) :class:`AzimuthalIntgrator`.
"""
config = integration_config.normalize(config, inplace=consume_keys)
ai = AzimuthalIntegrator()
_init_ai(ai, config, consume_keys)
return ai
def _init_ai(ai, config, consume_keys=False, read_maps=True):
"""Initialize an :class:`AzimuthalIntegrator` from a configuration.
:param AzimuthalIntegrator ai: An :class:`AzimuthalIntegrator`.
:param config: Key-value dictionary with all parameters
:param bool consume_keys: If true the keys from the dictionary will be
consumed when used.
:param bool read_maps: If true mask, flat, dark will be read.
:return: A configured (but uninitialized) :class:`AzimuthalIntgrator`.
"""
if not consume_keys:
config = dict(config)
# #This sets only what is part of the poni-file
config_reader = integration_config.ConfigurationReader(config)
poni = config_reader.pop_ponifile()
ai._init_from_poni(poni)
value = config.pop("chi_discontinuity_at_0", False)
if value:
ai.setChiDiscAtZero()
else:
ai.setChiDiscAtPi()
if read_maps:
filename = config.pop("mask_file", "")
apply_process = config.pop("do_mask", True)
if filename and apply_process:
try:
data = pyFAI.io.image.read_image_data(filename)
except Exception as error:
logger.error("Unable to load mask file %s, error %s", filename, error)
else:
ai.detector.mask = data
filename = config.pop("dark_current", "")
apply_process = config.pop("do_dark", True)
if filename and apply_process:
ai.detector.set_darkcurrent(_reduce_images(_normalize_filenames(filename)))
filename = config.pop("flat_field", "")
apply_process = config.pop("do_flat", True)
if filename and apply_process:
ai.detector.set_flatfield(_reduce_images(_normalize_filenames(filename)))
return ai
def _normalize_filenames(filenames):
"""Returns a list of strings from a string or a list of strings.
:rtype: List[str]
"""
if filenames is None or filenames == "":
return []
if isinstance(filenames, list):
return filenames
if isinstance(filenames, (str,)):
# It's a single filename
return [filenames]
raise TypeError("Unsupported type %s for a list of filenames" % type(filenames))
def _reduce_images(filenames, method="mean"):
"""
Reduce a set of filenames using a reduction method
:param List[str] filenames: List of files used to compute the data
:param str method: method used to compute the dark, "mean" or "median"
"""
if len(filenames) == 0:
return None
if len(filenames) == 1:
return pyFAI.io.image.read_image_data(filenames[0]).astype(numpy.float32)
else:
return average.average_images(filenames, filter_=method, fformat=None, threshold=0)
class Worker(object):
def __init__(self, azimuthalIntegrator=None,
shapeIn=(2048, 2048), shapeOut=(360, 500),
unit="r_mm", dummy=None, delta_dummy=None):
"""
:param AzimuthalIntegrator azimuthalIntegrator: An AzimuthalIntegrator instance
:param shapeIn: image size in input
:param shapeOut: Integrated size: can be (1,2000) for 1D integration
:param unit: can be "2th_deg, r_mm or q_nm^-1 ...
"""
self._sem = threading.Semaphore()
if azimuthalIntegrator is None:
self.ai = AzimuthalIntegrator()
else:
self.ai = azimuthalIntegrator
self._normalization_factor = None # Value of the monitor: divides the intensity by this value for normalization
self.nbpt_azim, self.nbpt_rad = shapeOut
self._unit = units.to_unit(unit)
self.polarization_factor = None
self.dummy = dummy
self.delta_dummy = delta_dummy
self.correct_solid_angle = True
self.dark_current_image = None
self.flat_field_image = None
self.mask_image = None
self.subdir = ""
self.extension = None
self.do_poisson = None
self.needs_reset = True
self.output = "numpy" # exports as numpy array by default
self.shape = shapeIn
self.method = "csr"
self.radial = None
self.azimuthal = None
self.radial_range = None
self.azimuth_range = None
self.safe = True
def __repr__(self):
"""
pretty print of myself
"""
lstout = ["Azimuthal Integrator:", self.ai.__repr__(),
"Input image shape: %s" % list(self.shape),
"Number of points in radial direction: %s" % self.nbpt_rad,
"Number of points in azimuthal direction: %s" % self.nbpt_azim,
"Unit in radial dimension: %s" % self.unit,
"Correct for solid angle: %s" % self.correct_solid_angle,
"Polarization factor: %s" % self.polarization_factor,
"Dark current image: %s" % self.dark_current_image,
"Flat field image: %s" % self.flat_field_image,
"Mask image: %s" % self.mask_image,
"Dummy: %s,\tDelta_Dummy: %s" % (self.dummy, self.delta_dummy),
"Directory: %s, \tExtension: %s" % (self.subdir, self.extension),
"Radial range: %s" % self.radial_range,
"Azimuth range: %s" % self.azimuth_range]
return os.linesep.join(lstout)
def do_2D(self):
return self.nbpt_azim > 1
def reset(self):
"""
this is just to force the integrator to initialize
"""
if self.needs_reset:
with self._sem:
if self.needs_reset:
self.ai.reset()
self.needs_reset = False
def reconfig(self, shape=(2048, 2048), sync=False):
"""
This is just to force the integrator to initialize with a given input image shape
:param shape: shape of the input image
:param sync: return only when synchronized
"""
self.shape = shape
self.ai.reset()
self.warmup(sync)
def process(self, data, variance=None, normalization_factor=1.0, writer=None, metadata=None):
"""
Process a frame
#TODO:
dark, flat, sa are missing
:param data: numpy array containing the input image
:param writer: An open writer in which 'write' will be called with the result of the integration
"""
with self._sem:
monitor = self._normalization_factor * normalization_factor if self._normalization_factor else normalization_factor
kwarg = {"unit": self.unit,
"dummy": self.dummy,
"delta_dummy": self.delta_dummy,
"method": self.method,
"polarization_factor": self.polarization_factor,
# "filename": None,
"data": data,
"correctSolidAngle": self.correct_solid_angle,
"safe": self.safe,
"variance": variance
}
if metadata is not None:
kwarg["metadata"] = metadata
if monitor is not None:
kwarg["normalization_factor"] = monitor
if self.do_2D():
kwarg["npt_rad"] = self.nbpt_rad
kwarg["npt_azim"] = self.nbpt_azim
else:
kwarg["npt"] = self.nbpt_rad
kwarg["error_model"] = self.error_model
if self.radial_range is not None:
kwarg["radial_range"] = self.radial_range
if self.azimuth_range is not None:
kwarg["azimuth_range"] = self.azimuth_range
error = None
try:
if self.do_2D():
integrated_result = self.ai.integrate2d(**kwarg)
self.radial = integrated_result.radial
self.azimuthal = integrated_result.azimuthal
result = integrated_result.intensity
if variance is not None:
error = integrated_result.sigma
else:
integrated_result = self.ai.integrate1d_ng(**kwarg)
self.radial = integrated_result.radial
self.azimuthal = None
result = numpy.vstack(integrated_result).T
except Exception as err:
logger.debug("Backtrace", exc_info=True)
err2 = ["error in integration do_2d: %s" % self.do_2D(),
str(err.__class__.__name__),
str(err),
"data.shape: %s" % (data.shape,),
"data.size: %s" % data.size,
"ai:",
str(self.ai),
"method:",
str(kwarg.get("method"))
]
logger.error("\n".join(err2))
raise err
if writer is not None:
writer.write(integrated_result)
if self.output == "raw":
return integrated_result
elif self.output == "numpy":
if (variance is not None) and (error is not None):
return result, error
else:
return result
def setSubdir(self, path):
"""
Set the relative or absolute path for processed data
"""
self.subdir = path
def setExtension(self, ext):
"""
enforce the extension of the processed data file written
"""
if ext:
self.extension = ext
else:
self.extension = None
def set_dark_current_file(self, imagefile):
self.ai.detector.set_darkcurrent(_reduce_images(imagefile))
self.dark_current_image = imagefile
setDarkcurrentFile = set_dark_current_file
def set_flat_field_file(self, imagefile):
self.ai.detector.set_flatfield(_reduce_images(imagefile))
self.flat_field_image = imagefile
setFlatfieldFile = set_flat_field_file
def set_config(self, config, consume_keys=False):
"""
Configure the working from the dictionary.
:param dict config: Key-value configuration
:param bool consume_keys: If true the keys from the dictionary will be
consumed when used.
"""
if not consume_keys:
# Avoid to edit the input argument
config = dict(config)
integration_config.normalize(config, inplace=True)
_init_ai(self.ai, config, consume_keys=True, read_maps=False)
# Do it here before reading the AI to be able to catch the io
filename = config.pop("mask_file", "")
apply_process = config.pop("do_mask", True)
if filename and apply_process:
try:
data = pyFAI.io.image.read_image_data(filename)
except Exception as error:
logger.error("Unable to load mask file %s, error %s", filename, error)
else:
self.ai.mask = data
# Do it here while we have to store metadata
filename = config.pop("dark_current", "")
apply_process = config.pop("do_dark", True)
if filename and apply_process:
filenames = _normalize_filenames(filename)
method = "mean"
data = _reduce_images(filenames, method=method)
self.ai.detector.set_darkcurrent(data)
self.dark_current_image = "%s(%s)" % (method, ",".join(filenames))
# Do it here while we have to store metadata
filename = config.pop("flat_field", "")
apply_process = config.pop("do_flat", True)
if filename and apply_process:
filenames = _normalize_filenames(filename)
method = "mean"
data = _reduce_images(filenames, method=method)
self.ai.detector.set_flatfield(data)
self.flat_field_image = "%s(%s)" % (method, ",".join(filenames))
# Uses it anyway in case do_2D is customed after the configuration
value = config.pop("nbpt_azim", None)
if value:
self.nbpt_azim = int(value)
else:
self.nbpt_azim = 1
reader = integration_config.ConfigurationReader(config)
self.method = reader.pop_method("csr")
if self.method.dim == 1:
self.nbpt_azim = 1
value = config.pop("nbpt_rad", None)
if value:
self.nbpt_rad = int(value)
value = config.pop("unit", units.TTH_DEG)
self.unit = units.to_unit(value)
value = config.pop("do_poisson", False)
self.do_poisson = bool(value)
value = config.pop("polarization_factor", None)
apply_value = config.pop("do_polarization", True)
if value and apply_value:
self.polarization_factor = value
else:
self.polarization_factor = None
value1 = config.pop("azimuth_range_min", None)
value2 = config.pop("azimuth_range_max", None)
apply_values = config.pop("do_azimuthal_range", True)
if apply_values and value1 is not None and value2 is not None:
self.azimuth_range = float(value1), float(value2)
value1 = config.pop("radial_range_min", None)
value2 = config.pop("radial_range_max", None)
apply_values = config.pop("do_radial_range", True)
if apply_values and value1 is not None and value2 is not None:
self.radial_range = float(value1), float(value2)
value = config.pop("do_solid_angle", True)
self.correct_solid_angle = bool(value)
self.dummy = config.pop("delta_dummy", None)
self.delta_dummy = config.pop("val_dummy", None)
apply_values = config.pop("do_dummy", True)
if not apply_values:
self.dummy, self.delta_dummy = None, None
self._normalization_factor = config.pop("normalization_factor", None)
if "monitor_name" in config:
logger.warning("Monitor name defined but unsupported by the worker.")
logger.info(self.ai.__repr__())
self.reset()
# For now we do not calculate the LUT as the size of the input image is unknown
def set_unit(self, value):
self._unit = units.to_unit(value)
def get_unit(self):
return self._unit
unit = property(get_unit, set_unit)
def set_error_model(self, value):
if value == "poisson":
self.do_poisson = True
elif value is None or value == "":
self.do_poisson = False
else:
raise RuntimeError("Unsupported error model '%s'" % value)
def get_error_model(self):
if self.do_poisson:
return "poisson"
return None
error_model = property(get_error_model, set_error_model)
def get_config(self):
"""Returns the configuration as a dictionary.
FIXME: The returned dictionary is not exhaustive.
"""
config = OrderedDict()
config["unit"] = str(self.unit)
for key in ["dist", "poni1", "poni2", "rot1", "rot3", "rot2", "pixel1", "pixel2", "splineFile", "wavelength"]:
try:
config[key] = self.ai.__getattribute__(key)
except Exception:
pass
for key in ["nbpt_azim", "nbpt_rad", "polarization_factor", "dummy", "delta_dummy",
"correct_solid_angle", "dark_current_image", "flat_field_image",
"mask_image", "do_poisson", "shape", "method"]:
try:
config[key] = self.__getattribute__(key)
except Exception:
pass
for key in ["azimuth_range", "radial_range"]:
try:
value = self.__getattribute__(key)
except Exception:
pass
else:
if value is not None:
config["do_" + key] = True
config[key + "_min"] = min(value)
config[key + "_max"] = max(value)
else:
config["do_" + key] = False
return config
def get_json_config(self):
"""return configuration as a JSON string"""
return json.dumps(self.get_config(), indent=2)
def set_json_config(self, json_file):
if os.path.isfile(json_file):
with open(json_file, "r") as f:
config = json.load(f)
else:
config = json.loads(json_file)
self.set_config(config)
setJsonConfig = set_json_config
def save_config(self, filename=None):
"""Save the configuration as a JSON file"""
if not filename:
filename = self.config_file
with open(filename, "w") as w:
w.write(self.get_json_config())
def warmup(self, sync=False):
"""
Process a dummy image to ensure everything is initialized
:param sync: wait for processing to be finished
"""
t = threading.Thread(target=self.process,
name="init2d",
args=(numpy.zeros(self.shape, dtype=numpy.float32),))
t.start()
if sync:
t.join()
def get_normalization_factor(self):
with self._sem:
return self._normalization_factor
def set_normalization_factor(self, value):
with self._sem:
self._normalization_factor = value
normalization_factor = property(get_normalization_factor, set_normalization_factor)
def set_method(self, method="csr"):
"Set the integration method"
dim = 2 if self.do_2D() else 1
if method is None:
method = method_registry.Method(dim, "*", "*", "*", target=None)
elif isinstance(method, method_registry.Method):
method = method.fixed(dim=dim)
elif isinstance(method, (str,)):
method = method_registry.Method.parsed(method)
method = method.fixed(dim=dim)
elif isinstance(method, (list, tuple)):
if len(method) != 3:
raise TypeError("Method size %s unsupported." % len(method))
split, algo, impl = method
method = method_registry.Method(dim, split, algo, impl, target=None)
else:
raise TypeError("Method type %s unsupported." % type(method))
return method
__call__ = process
class PixelwiseWorker(object):
"""
Simple worker doing dark, flat, solid angle and polarization correction
"""
def __init__(self, dark=None, flat=None, solidangle=None, polarization=None,
mask=None, dummy=None, delta_dummy=None, device=None,
empty=None, dtype="float32"):
"""Constructor of the worker
:param dark: array
:param flat: array
:param solidangle: solid-angle array
:param polarization: numpy array with 2D polarization corrections
:param device: Used to influance OpenCL behavour: can be "cpu", "GPU", "Acc" or even an OpenCL context
:param empty: value given for empty pixels by default
:param dtype: unit (and precision) in which to perform calculation: float32 or float64
"""
self.ctx = None
if dark is not None:
self.dark = numpy.ascontiguousarray(dark, dtype=numpy.float32)
else:
self.dark = None
if flat is not None:
self.flat = numpy.ascontiguousarray(flat, dtype=numpy.float32)
else:
self.flat = None
if solidangle is not None:
self.solidangle = numpy.ascontiguousarray(solidangle, dtype=numpy.float32)
else:
self.solidangle = None
if polarization is not None:
self.polarization = numpy.ascontiguousarray(polarization, dtype=numpy.float32)
else:
self.polarization = None
if mask is None:
self.mask = False
elif mask.min() < 0 and mask.max() == 0: # 0 is valid, <0 is invalid
self.mask = (mask < 0).astype(numpy.int8)
else:
self.mask = mask.astype(numpy.int8)
self.dummy = dummy
self.delta_dummy = delta_dummy
self.empty = float(empty) if empty else 0.0
self.dtype = numpy.dtype(dtype).type
def process(self, data, variance=None, normalization_factor=None,
use_cython=USE_CYTHON):
"""
Process the data and apply a normalization factor
:param data: input data
:param variance: the variance associated to the data
:param normalization: normalization factor
:return: processed data, optionally with the assiciated error if variance is provided
"""
propagate_error = (variance is not None)
if use_cython:
method = preproc
else:
method = preproc_numpy
temp_data = method(data,
variance=variance,
dark=self.dark,
flat=self.flat,
solidangle=self.solidangle,
polarization=self.polarization,
absorption=None,
mask=self.mask,
dummy=self.dummy,
delta_dummy=self.delta_dummy,
normalization_factor=normalization_factor,
empty=self.empty,
poissonian=0,
dtype=self.dtype)
if propagate_error:
proc_data = temp_data[..., 0]
proc_variance = temp_data[..., 1]
proc_norm = temp_data[..., 2]
proc_data /= proc_norm
proc_error = numpy.sqrt(proc_variance) / proc_norm
return proc_data, proc_error
else:
proc_data = temp_data
return proc_data
__call__ = process
class DistortionWorker(object):
"""
Simple worker doing dark, flat, solid angle and polarization correction
"""
def __init__(self, detector=None, dark=None, flat=None, solidangle=None, polarization=None,
mask=None, dummy=None, delta_dummy=None, method="LUT", device=None):
"""Constructor of the worker
:param dark: array
:param flat: array
:param solidangle: solid-angle array
:param polarization: numpy array with 2D polarization corrections
:param dummy: value for bad pixels
:param delta_dummy: precision for dummies
:param method: LUT or CSR for the correction
:param device: Used to influance OpenCL behavour: can be "cpu", "GPU", "Acc" or even an OpenCL context
"""
self.ctx = None
if dark is not None:
self.dark = numpy.ascontiguousarray(dark, dtype=numpy.float32)
else:
self.dark = None
if flat is not None:
self.flat = numpy.ascontiguousarray(flat, dtype=numpy.float32)
else:
self.flat = None
if solidangle is not None:
self.solidangle = numpy.ascontiguousarray(solidangle, dtype=numpy.float32)
else:
self.solidangle = None
if polarization is not None:
self.polarization = numpy.ascontiguousarray(polarization, dtype=numpy.float32)
else:
self.polarization = None
if mask is None:
self.mask = False
mask = numpy.zeros(detector.shape, dtype=bool)
elif mask.min() < 0 and mask.max() == 0: # 0 is valid, <0 is invalid
mask = self.mask = (mask < 0)
else:
mask = self.mask = mask.astype(bool)
self.dummy = dummy
self.delta_dummy = delta_dummy
if detector is not None:
self.distortion = Distortion(detector, method=method, device=device,
mask=mask, empty=self.dummy or 0)
self.distortion.reset(prepare=True) # enfoce initization
else:
self.distortion = None
def process(self,
data,
variance=None,
normalization_factor=1.0):
"""
Process the data and apply a normalization factor
:param data: input data
:param variance: the variance associated to the data
:param normalization: normalization factor
:return: processed data as either an array (data) or two (data, error)
"""
if self.distortion is not None:
return self.distortion.correct_ng(data,
variance=variance,
dark=self.dark,
flat=self.flat,
solidangle=self.solidangle,
polarization=self.polarization,
dummy=self.dummy,
delta_dummy=self.delta_dummy,
normalization_factor=normalization_factor)
else:
proc_data = preproc(data,
variance=variance,
dark=self.dark,
flat=self.flat,
solidangle=self.solidangle,
polarization=self.polarization,
absorption=None,
mask=self.mask,
dummy=self.dummy,
delta_dummy=self.delta_dummy,
normalization_factor=normalization_factor,
empty=None)
if variance is not None:
pp_signal = proc_data[..., 0]
pp_variance = proc_data[..., 1]
pp_normalisation = proc_data[..., 2]
if numexpr is None:
# Cheap, muthithreaded way:
res_signal = numexpr.evaluate("where(pp_normalisation==0.0, 0.0, pp_signal / pp_normalisation)")
res_error = numexpr.evaluate("where(pp_normalisation==0.0, 0.0, sqrt(pp_variance) / abs(pp_normalisation))")
else:
# Take the numpy road:
res_signal = numpy.zeros_like(pp_signal)
res_error = numpy.zeros_like(pp_signal)
msk = numpy.where(pp_normalisation != 0)
res_signal[msk] = pp_signal[msk] / pp_normalisation[msk]
res_error[msk] = numpy.sqrt(pp_variance[msk]) / abs(pp_normalisation[msk])
return res_signal, res_error
else:
return proc_data
__call__ = process
|