File: usage.rst

package info (click to toggle)
pyfastx 2.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,336 kB
  • sloc: ansic: 4,820; python: 1,817; sh: 505; perl: 66; makefile: 31
file content (780 lines) | stat: -rw-r--r-- 18,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
FASTX
=====

New in ``pyfastx`` 0.8.0.

Iterate over sequences in FASTA
-------------------------------

When iterating over sequences on FASTX object, a tuple ``(name, seq)`` will be returned.

.. code:: python

	>>> fa = pyfastx.Fastx('tests/data/test.fa')
	>>> for name,seq in fa:
	>>> 	print(name)
	>>> 	print(seq)

	>>> #always output uppercase sequence
	>>> for item in pyfastx.Fastx('tests/data/test.fa', uppercase=True):
	>>> 	print(item)

	>>> #Manually specify sequence format
	>>> for item in pyfastx.Fastx('tests/data/test.fa', format="fasta"):
	>>> 	print(item)

If you want the sequence comment, you can set comment to True, New in ``pyfastx`` 0.9.0.

.. code:: python

    >>> fa = pyfastx.Fastx('tests/data/test.fa.gz', comment=True)
    >>> for name,seq,comment in fa:
    >>>     print(name)
    >>>     print(seq)
    >>>     print(comment)

.. note::

	The comment is the content of header line after the first white space or tab character.

Iterate over reads in FASTQ
---------------------------

When iterating over reads on FASTX object, a tuple ``(name, seq, qual)`` will be returned.

.. code:: python

	>>> fq = pyfastx.Fastx('tests/data/test.fq')
	>>> for name,seq,qual in fq:
	>>> 	print(name)
	>>> 	print(seq)
	>>> 	print(qual)

If you want the read comment, you can set comment to True, New in ``pyfastx`` 0.9.0.

.. code:: python

    >>> fq = pyfastx.Fastx('tests/data/test.fq.gz', comment=True)
    >>> for name,seq,qual,comment in fq:
    >>>     print(name)
    >>>     print(seq)
    >>>     print(qual)
    >>>     print(comment)

.. note::

	The comment is the content of header line after the first white space or tab character.

FASTA
=====

Read FASTA file
---------------

Read plain or gzipped FASTA file and build index, support for random access to FASTA.

.. code:: python

	>>> import pyfastx
	>>> fa = pyfastx.Fasta('test/data/test.fa.gz')
	>>> fa
	<Fasta> test/data/test.fa.gz contains 211 seqs

.. note::
	Building index may take some time. The time required to build index depends on the size of FASTA file. If index built, you can randomly access to any sequences in FASTA file. The index file can be reused to save time when you read sequences from FASTA file next time.

FASTA records iteration
-----------------------

The fastest way to iterate plain or gzipped FASTA file without building index, the iteration will return a tuple contains name and sequence.

.. code:: python

	>>> import pyfastx
	>>> for name, seq in pyfastx.Fasta('test/data/test.fa.gz', build_index=False):
	>>> 	print(name, seq)

If you want to use full header line as sequence identifier without building index, you can do like this:

.. code:: python

	>>> import pyfastx
	>>> for name, seq in pyfastx.Fasta('test/data/test.fa', build_index=False, full_name=True):
	>>> 	print(name, seq)

You can also iterate sequence object from FASTA object like this:

.. code:: python

	>>> import pyfastx
	>>> for seq in pyfastx.Fasta('test/data/test.fa.gz'):
	>>> 	print(seq.name)
	>>> 	print(seq.seq)
	>>> 	print(seq.description)

Iteration with ``build_index=True`` (default) return sequence object which allows you to access attributes of sequence. New in pyfastx 0.6.3.

Get FASTA information
---------------------

.. code:: python

	>>> # get sequence counts in FASTA
	>>> len(fa)
	211

	>>> # get total sequence length of FASTA
	>>> fa.size
	86262

	>>> # get GC content of DNA sequences in FASTA
	>>> fa.gc_content
	43.529014587402344

	>>> # get GC skew of DNA sequences in FASTA
	>>> # New in pyfastx 0.3.8
	>>> fa.gc_skews
	0.004287730902433395

	>>> # get composition of nucleotides in FASTA
	>>> fa.composition
	{'A': 24534, 'C': 18694, 'G': 18855, 'T': 24179}

	>>> # get fasta type (DNA, RNA, or protein)
	>>> # New in pyfastx 0.5.4
	>>> fa.type
	'DNA'

	>>> # check fasta file is gzip compressed
	>>> # New in pyfastx 0.5.4
	>>> fa.is_gzip
	True

Get longest and shortest sequence
---------------------------------

New in ``pyfastx`` 0.3.0

.. code:: python

	>>> # get longest sequence
	>>> s = fa.longest
	>>> s
	<Sequence> JZ822609.1 with length of 821

	>>> s.name
	'JZ822609.1'

	>>> len(s)
	821

	>>> # get shortest sequence
	>>> s = fa.shortest
	>>> s
	<Sequence> JZ822617.1 with length of 118

	>>> s.name
	'JZ822617.1'

	>>> len(s)
	118

Calculate N50 and L50
---------------------

New in ``pyfastx`` 0.3.0

Calculate assembly N50 and L50, return (N50, L50), learn more about `N50,L50 <https://www.molecularecologist.com/2017/03/whats-n50/>`_

.. code:: python

	>>> # get FASTA N50 and L50
	>>> fa.nl(50)
	(516, 66)

	>>> # get FASTA N90 and L90
	>>> fa.nl(90)
	(231, 161)

	>>> # get FASTA N75 and L75
	>>> fa.nl(75)
	(365, 117)

Get sequence mean and median length
-----------------------------------

New in ``pyfastx`` 0.3.0

.. code:: python

	>>> # get sequence average length
	>>> fa.mean
	408

	>>> # get sequence median length
	>>> fa.median
	430

Get sequence counts
-------------------

New in ``pyfastx`` 0.3.0

Get counts of sequences whose length >= specified length

.. code:: python

	>>> # get counts of sequences with length >= 200 bp
	>>> fa.count(200)
	173

	>>> # get counts of sequences with length >= 500 bp
	>>> fa.count(500)
	70

Get subsequences
----------------

Subsequences can be retrieved from FASTA file by using a list of [start, end] coordinates

.. code:: python

	>>> # get subsequence with start and end position
	>>> interval = (1, 10)
	>>> fa.fetch('JZ822577.1', interval)
	'CTCTAGAGAT'

	>>> # get subsequences with a list of start and end position
	>>> intervals = [(1, 10), (50, 60)]
	>>> fa.fetch('JZ822577.1', intervals)
	'CTCTAGAGATTTTAGTTTGAC'

	>>> # get subsequences with reverse strand
	>>> fa.fetch('JZ822577.1', (1, 10), strand='-')
	'ATCTCTAGAG'

Get flank sequences
-------------------

New in ``pyfastx`` 0.7.0

Get flank sequences for the given subsequence, return a tuple with left and right flank sequence

.. code:: python

	>>> # get flank sequences with length of 20 for subsequence JZ822577:50-60
	>>> fa.flank('JZ822577.1', 50, 60, 20)
	('TCACTCAGGCTCTTTGTCAT', 'TAGGATATCGAGTATTCAAG')

	>>> # get flank sequences for a single base or SNP at position 100
	>>> fa.flank('JZ822577.1', 100, 100, 20)
	('GCTCATCGCTTTTGGTAATC', 'TTGCGGTGCATGCCTTTGCA')

	>>> # get flank sequences by buffer cache
	>>> fa.flank('JZ822577.1', 70, 90, flank_length=20, use_cache=True)
	('TTTAGTTTGACTAGGATATC', 'TTGGTAATCTTTGCGGTGCA')

.. note::

	The start and end position of subsequence were 1-based. When extracting flank for large numbers of subsequences from the same sequence, ``use_cache=True`` was recommended to improve speed.

Key function
------------

New in ``pyfastx`` 0.5.1

Sometimes your fasta will have a long header which contains multiple identifiers and description, for example:

``>JZ822577.1 contig1 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence``

In this case, either "JZ822577.1" or "contig1" could be used as the identifier.
You can specify the key function to select one as identifier.

.. code:: python

	>>> #default use JZ822577.1 as identifier
	>>> #specify key_func to select contig1 as identifer
	>>> fa = pyfastx.Fasta('tests/data/test.fa.gz', key_func=lambda x: x.split()[1])
	>>> fa
	<Fasta> tests/data/test.fa.gz contains 211 seqs

.. note::
	If the index file already existed, you should delete the previous index file, and then use key_func to create a new index file

Sequence
========

Get a sequence from FASTA
-------------------------

.. code:: python

	>>> # get sequence like dictionary
	>>> s1 = fa['JZ822577.1']
	>>> s1
	<Sequence> JZ822577.1 with length of 333

	>>> # get sequence like list
	>>> s2 = fa[2]
	>>> s2
	<Sequence> JZ822579.1 with length of 176

	>>> # get last sequence
	>>> s3 = fa[-1]
	>>> s3
	<Sequence> JZ840318.1 with length of 134

	>>> # check name weather in FASTA file
	>>> 'JZ822577.1' in fa
	True

Get sequence information
------------------------

.. code:: python

	>>> s = fa[-1]
	>>> s
	<Sequence> JZ840318.1 with length of 134

	>>> # get sequence order number in FASTA file
	>>> # New in pyfastx 0.3.7
	>>> s.id
	211

	>>> # get sequence name
	>>> s.name
	'JZ840318.1'

	>>> # get sequence description, New in pyfastx 0.3.1
	>>> s.description
	'R283 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence'

	>>> # get sequence string
	>>> s.seq
	'ACTGGAGGTTCTTCTTCCTGTGGAAAGTAACTTGTTTTGCCTTCACCTGCCTGTTCTTCACATCAACCTTGTTCCCACACAAAACAATGGGAATGTTCTCACACACCCTGCAGAGATCACGATGCCATGTTGGT'

	>>> # get sequence raw string, New in pyfastx 0.6.3
	>>> print(s.raw)
	>JZ840318.1 R283 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence
	ACTGGAGGTTCTTCTTCCTGTGGAAAGTAACTTGTTTTGCCTTCACCTGCCTGTTCTTCACATCAACCTT
	GTTCCCACACAAAACAATGGGAATGTTCTCACACACCCTGCAGAGATCACGATGCCATGTTGGT

	>>> # get sequence length
	>>> len(s)
	134

	>>> # get GC content if dna sequence
	>>> s.gc_content
	46.26865768432617

	>>> # get nucleotide composition if dna sequence
	>>> s.composition
	{'A': 31, 'C': 37, 'G': 25, 'T': 41, 'N': 0}

Sequence slice
--------------

Sequence object can be sliced like a python string

.. code:: python

	>>> # get a sub seq from sequence
	>>> s = fa[-1]
	>>> ss = s[10:30]
	>>> ss
	<Sequence> JZ840318.1 from 11 to 30

	>>> ss.name
	'JZ840318.1:11-30'

	>>> ss.seq
	'CTTCTTCCTGTGGAAAGTAA'

	>>> ss = s[-10:]
	>>> ss
	<Sequence> JZ840318.1 from 125 to 134

	>>> ss.name
	'JZ840318.1:125-134'

	>>> ss.seq
	'CCATGTTGGT'

.. note::

	Slicing start and end coordinates are 0-based. Currently, pyfastx does not support an optional third ``step`` or ``stride`` argument. For example ``ss[::-1]``

Reverse and complement sequence
-------------------------------

.. code:: python

	>>> # get sliced sequence
	>>> fa[0][10:20].seq
	'GTCAATTTCC'

	>>> # get reverse of sliced sequence
	>>> fa[0][10:20].reverse
	'CCTTTAACTG'

	>>> # get complement of sliced sequence
	>>> fa[0][10:20].complement
	'CAGTTAAAGG'

	>>> # get reversed complement sequence, corresponding to sequence in antisense strand
	>>> fa[0][10:20].antisense
	'GGAAATTGAC'

Read sequence line by line
--------------------------

New in ``pyfastx`` 0.3.0

The sequence object can be iterated line by line as they appear in FASTA file.

.. code:: python

	>>> for line in fa[0]:
	... 	print(line)
	...
	CTCTAGAGATTACTTCTTCACATTCCAGATCACTCAGGCTCTTTGTCATTTTAGTTTGACTAGGATATCG
	AGTATTCAAGCTCATCGCTTTTGGTAATCTTTGCGGTGCATGCCTTTGCATGCTGTATTGCTGCTTCATC
	ATCCCCTTTGACTTGTGTGGCGGTGGCAAGACATCCGAAGAGTTAAGCGATGCTTGTCTAGTCAATTTCC
	CCATGTACAGAATCATTGTTGTCAATTGGTTGTTTCCTTGATGGTGAAGGGGCTTCAATACATGAGTTCC
	AAACTAACATTTCTTGACTAACACTTGAGGAAGAAGGACAAGGGTCCCCATGT

.. note::

	Sliced sequence (e.g. fa[0][10:50]) cannot be read line by line

Search for subsequence
----------------------

New in ``pyfastx`` 0.3.6

Search for subsequence from given sequence and get one-based start position of the first occurrence

.. code:: python

	>>> # search subsequence in sense strand
	>>> fa[0].search('GCTTCAATACA')
	262

	>>> # check subsequence weather in sequence
	>>> 'GCTTCAATACA' in fa[0]
	True

	>>> # search subsequence in antisense strand
	>>> fa[0].search('CCTCAAGT', '-')
	301

FASTQ
=====

Read FASTQ file
---------------

Read plain or gzipped file and build index, support for random access to reads from FASTQ.

.. code:: python

	>>> import pyfastx
	>>> fq = pyfastx.Fastq('tests/data/test.fq.gz')
	>>> fq
	<Fastq> tests/data/test.fq.gz contains 100 reads

FASTQ records iteration
-----------------------

The fastest way to parse plain or gzipped FASTQ file without building index, the iteration will return a tuple contains read name, seq and quality.

.. code:: python

	>>> import pyfastx
	>>> for name,seq,qual in pyfastx.Fastq('tests/data/test.fq.gz', build_index=False):
	>>> 	print(name)
	>>> 	print(seq)
	>>> 	print(qual)

If you want to use full header line as read identifier without building index, you can do like this:

New in ``pyfastx`` 0.8.0

.. code:: python

	>>> import pyfastx
	>>> for name,seq,qual in pyfastx.Fastq('test/data/test.fq', build_index=False, full_name=True):
	>>> 	print(name, seq, qual)

You can also iterate read object from FASTQ object like this:

.. code:: python

	>>> import pyfastx
	>>> for read in pyfastx.Fastq('test/data/test.fq.gz'):
	>>> 	print(read.name)
	>>> 	print(read.seq)
	>>> 	print(read.qual)
	>>> 	print(read.quali)

Iteration with ``build_index=True`` (default) return read object which allows you to access attribution of read. New in pyfastx 0.6.3.

Get FASTQ information
---------------------

.. code:: python

	>>> # get read counts in FASTQ
	>>> len(fq)
	800

	>>> # get total bases
	>>> fq.size
	120000

	>>> # get GC content of FASTQ file
	>>> fq.gc_content
	66.17471313476562

	>>> # get composition of bases in FASTQ
	>>> fq.composition
	{'A': 20501, 'C': 39705, 'G': 39704, 'T': 20089, 'N': 1}

	>>> # get phred which affects the quality score conversion
	>>> fq.phred
	33

	>>> # get the average length of reads
	>>> fq.avglen
	150.0

	>>> # get the maximum length of reads
	>>> fq.maxlen
	150

	>>> # get the minimum length of reads
	>>> fq.minlen
	150

	>>> # get the maximum quality score of bases
	>>> fq.maxqual
	70

	>>> # get the minimum quality score of bases
	>>> fq.minqual
	35

	>>> # Guess fastq quality encoding system
	>>> # New in pyfastx 0.4.1
	>>> fq.encoding_type
	['Sanger Phred+33', 'Illumina 1.8+ Phred+33']

Read
=====

Get read from FASTQ
-------------------

.. code:: python

	>>> #get read like a dict by read name
	>>> r1 = fq['A00129:183:H77K2DMXX:1:1101:4752:1047']
	>>> r1
	<Read> A00129:183:H77K2DMXX:1:1101:4752:1047 with length of 150

	>>> # get read like a list by index
	>>> r2 = fq[10]
	>>> r2
	<Read> A00129:183:H77K2DMXX:1:1101:18041:1078 with length of 150

	>>> # get the last read
	>>> r3 = fq[-1]
	>>> r3
	<Read> A00129:183:H77K2DMXX:1:1101:31575:4726 with length of 150

	>>> # check a read weather in FASTQ file
	>>> 'A00129:183:H77K2DMXX:1:1101:4752:1047' in fq
	True

Get read information
--------------------

.. code:: python

	>>> r = fq[-10]
	>>> r
	<Read> A00129:183:H77K2DMXX:1:1101:1750:4711 with length of 150

	>>> # get read order number in FASTQ file
	>>> r.id
	791

	>>> # get read name
	>>> r.name
	'A00129:183:H77K2DMXX:1:1101:1750:4711'

	>>> # get read full header line, New in pyfastx 0.6.3
	>>> r.description
	'@A00129:183:H77K2DMXX:1:1101:1750:4711 1:N:0:CAATGGAA+CGAGGCTG'

	>>> # get read length
	>>> len(r)
	150

	>>> # get read sequence
	>>> r.seq
	'CGAGGAAATCGACGTCACCGATCTGGAAGCCCTGCGCGCCCATCTCAACCAGAAATGGGGTGGCCAGCGCGGCAAGCTGACCCTGCTGCCGTTCCTGGTCCGCGCCATGGTCGTGGCGCTGCGCGACTTCCCGCAGTTGAACGCGCGCTA'

	>>> # get raw string of read, New in pyfastx 0.6.3
	>>> print(r.raw)
	@A00129:183:H77K2DMXX:1:1101:1750:4711 1:N:0:CAATGGAA+CGAGGCTG
	CGAGGAAATCGACGTCACCGATCTGGAAGCCCTGCGCGCCCATCTCAACCAGAAATGGGGTGGCCAGCGCGGCAAGCTGACCCTGCTGCCGTTCCTGGTCCGCGCCATGGTCGTGGCGCTGCGCGACTTCCCGCAGTTGAACGCGCGCTA
	+
	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FF,FFFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFF:

	>>> # get read quality ascii string
	>>> r.qual
	'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FF,FFFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFF:'

	>>> # get read quality integer value, ascii - 33 or 64
	>>> r.quali
	[37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25, 37, 37, 11, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 11, 37, 25, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25]

	>>> # get read length
	>>> len(r)
	150

FastaKeys
=========

Get fasta keys
---------------

Get all names of sequence as a list-like object

.. code:: python

	>>> ids = fa.keys()
	>>> ids
	<FastaKeys> contains 211 keys

	>>> # get count of sequence
	>>> len(ids)
	211

	>>> # get key by index
	>>> ids[0]
	'JZ822577.1'

	>>> # check key whether in fasta
	>>> 'JZ822577.1' in ids
	True

	>>> # iterate over keys
	>>> for name in ids:
	>>> 	print(name)

	>>> # convert to a list
	>>> list(ids)

Sort keys
----------------

Sort keys by sequence id, name, or length for iteration

New in ``pyfastx`` 0.5.0

.. code:: python

	>>> # sort keys by length with descending order
	>>> for name in ids.sort(by='length', reverse=True):
	>>> 	print(name)

	>>> # sort keys by name with ascending order
	>>> for name in ids.sort(by='name'):
	>>> 	print(name)

	>>> # sort keys by id with descending order
	>>> for name in ids.sort(by='id', reverse=True)
	>>> 	print(name)

Filter keys
------------------

Filter keys by sequence length and name

New in ``pyfastx`` 0.5.10

.. code:: python

	>>> # get keys with length > 600
	>>> ids.filter(ids > 600)
	<FastaKeys> contains 48 keys

	>>> # get keys with length >= 500 and <= 700
	>>> ids.filter(ids>=500, ids<=700)
	<FastaKeys> contains 48 keys

	>>> # get keys with length > 500 and < 600
	>>> ids.filter(500<ids<600)
	<FastaKeys> contains 22 keys

	>>> # get keys contain JZ8226
	>>> ids.filter(ids % 'JZ8226')
	<FastaKeys> contains 90 keys

	>>> # get keys contain JZ8226 with length > 550
	>>> ids.filter(ids % 'JZ8226', ids>550)
	<FastaKeys> contains 17 keys

	>>> # list a filtered result
	>>> ids.filter(ids % 'JZ8226', ids>730)
	>>> list(ids)
	['JZ822609.1', 'JZ822650.1', 'JZ822664.1', 'JZ822699.1']

	>>> # list a filtered result with sort order
	>>> ids.filter(ids % 'JZ8226', ids>730).sort('length', reverse=True)
	>>> list(ids)
	['JZ822609.1', 'JZ822699.1', 'JZ822664.1', 'JZ822650.1']

	>>> ids.filter(ids % 'JZ8226', ids>730).sort('name', reverse=True)
	>>> list(ids)
	['JZ822699.1', 'JZ822664.1', 'JZ822650.1', 'JZ822609.1']

Clear filter and sort order
---------------------------

.. code:: python

	>>> # clear sort order and filters
	>>> ids.reset()
	<Identifier> contains 211 identifiers

FastqKeys
=========

New in ``pyfastx`` 0.8.0.

Get fastq keys
---------------

Get all names of read as a list-like object.

.. code:: python

	>>> ids = fq.keys()
	>>> ids
	<FastqKeys> contains 800 keys

	>>> # get count of read
	>>> len(ids)
	800

	>>> # get key by index
	>>> ids[0]
	'A00129:183:H77K2DMXX:1:1101:6804:1031'

	>>> # check key whether in fasta
	>>> 'A00129:183:H77K2DMXX:1:1101:14416:1031' in ids
	True