1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
* rr_flux_sx.F
*
* Rick Romea
* Jan. 24, 2000
*
* Computes the zonal nonlinear advective flux term: -d(uS)/dx
* Units : (SALINITY(ppm) - 0.035) / s
* MOM2 Grid: T
*
*******************************************************************
SUBROUTINE RR_flux_sx_init(id)
IMPLICIT NONE
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
CALL ef_set_desc (id,
.'-d(uS)/dx advective momentum: flux-form (SALT/s);MOM2 T Grid.')
CALL ef_set_num_args (id, 2)
CALL ef_set_axis_inheritance (id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS)
CALL ef_set_piecemeal_ok (id, NO, NO, YES, YES)
CALL ef_set_arg_name (id, ARG1, 'U')
CALL ef_set_arg_desc (id, ARG1,
. 'Zonal velocity, on the MOM2 U Grid. ')
CALL ef_set_arg_unit (id, ARG1, 'cm/sec')
CALL ef_set_arg_type (id, ARG1, FLOAT_ARG)
CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES)
CALL ef_set_axis_extend (id, ARG1, X_AXIS,-1,+1)
CALL ef_set_axis_extend (id, ARG1, Y_AXIS,-1,+1)
CALL ef_set_arg_name (id, ARG2, 'SALT')
CALL ef_set_arg_desc (id, ARG2,
. 'Salinity, on the MOM2 T Grid. ')
CALL ef_set_arg_unit (id, ARG2,
. '(SALINITY(ppt) - 35) /1000')
CALL ef_set_arg_type (id, ARG2, FLOAT_ARG)
CALL ef_set_axis_influence (id, ARG2, NO, NO, YES, YES)
CALL ef_set_axis_extend (id, ARG2, X_AXIS,-1,+1)
CALL ef_set_axis_extend (id, ARG2, Y_AXIS,-1,+1)
END
SUBROUTINE RR_flux_sx_compute(id, arg_1, arg_2, result)
IMPLICIT NONE
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
REAL bad_flag(EF_MAX_ARGS)
REAL bad_flag_result
REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy,
. mem1loz:mem1hiz, mem1lot:mem1hit)
REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy,
. mem2loz:mem2hiz, mem2lot:mem2hit)
REAL result (memreslox:memreshix,memresloy:memreshiy,
. memresloz:memreshiz,memreslot:memreshit)
INTEGER res_lo_ss (4)
INTEGER res_hi_ss (4)
INTEGER res_incr (4)
INTEGER arg_lo_ss (4,EF_MAX_ARGS)
INTEGER arg_hi_ss (4,EF_MAX_ARGS)
INTEGER arg_incr (4,EF_MAX_ARGS)
INTEGER i, j, k, l
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2
REAL*8 yU(1024)
REAL*8 xU(1024)
REAL*8 yT(1024)
REAL*8 xT(1024)
INTEGER ilat
INTEGER ilon
CHARACTER *16 ax_name(4)
CHARACTER *16 ax_units(4)
LOGICAL backward(4)
LOGICAL modulo(4)
LOGICAL regular(4)
REAL dxt, dyt, dyu
REAL adv_vet, adv_fe, cst
INCLUDE 'rr_parameters.h'
C*********************************************************************
C
c dyt = latitudinal height of "t" grid box (in cm)
c dxt = longitudinal width of "t" grid box at the equator (cm)
c dyu = latitudinal height of "u,v" grid box (cm)
c yu(j) = latitude of the jth "u,v" point in degrees
c yt(j) = latitude of the jth "t" point in degrees
c xt(i) = longitude of the ith "t" point in degrees
c xu(i) = longitude of the ith "u,v" point in degrees
C
C*********************************************************************
! Statement functions
dxt(i) = SNGL (xU(i) - xU(i-1)) * Longitude_to_cm
dyt(j) = SNGL (yU(j) - yU(j-1)) * Latitude_to_cm
dyu(j) = SNGL (yT(j+1) - yT(j)) * Latitude_to_cm
adv_vet(i1,j1,k1,l1,iLat) = (arg_1(i1,j1,k1,l1)*dyu(iLat) +
. arg_1(i1,j1-1,k1,l1)*dyu(iLat-1)) /2./ dyt(iLat)
adv_fe (i1,j1,k1,l1,i2,j2,k2,l2,iLat) = adv_vet(i1,j1,k1,l1,iLat)
. *(arg_2(i2,j2,k2,l2) + arg_2(i2+1,j2,k2,l2))
! Get axis data
CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags (id, bad_flag, bad_flag_result)
CALL ef_get_coordinates (id, ARG1, X_AXIS,
. arg_lo_ss(X_AXIS,ARG1),
. arg_hi_ss(X_AXIS,ARG1), xU)
CALL ef_get_coordinates (id, ARG1, Y_AXIS,
. arg_lo_ss(Y_AXIS,ARG1),
. arg_hi_ss(Y_AXIS,ARG1), yU)
CALL ef_get_coordinates (id, ARG2, X_AXIS,
. arg_lo_ss(X_AXIS,ARG2),
. arg_hi_ss(X_AXIS,ARG2), xT)
CALL ef_get_coordinates (id, ARG2, Y_AXIS,
. arg_lo_ss(Y_AXIS,ARG2),
. arg_hi_ss(Y_AXIS,ARG2), yT)
! Check axis units: bail out if not lat and lon.
CALL ef_get_axis_info (id, ARG1, ax_name, ax_units,
. backward, modulo, regular)
IF ( ax_units(1) .NE. 'deg' .AND.
. ax_units(1) .NE. 'lon' .AND.
. ax_units(1) .NE. 'degrees_E' .AND.
. ax_units(1) .NE. 'longitude' .AND.
. ax_units(1) .NE. 'Longitude' .AND.
. ax_units(1) .NE. 'LONGITUDE' ) THEN
WRITE (6,*)'Longitude axis units =', ax_units(1)
!CALL ef_bail_out(id,'Longitude axis must be in degrees')
ENDIF
IF ( ax_units(2) .NE. 'deg' .AND.
. ax_units(2) .NE. 'lat' .AND.
. ax_units(2) .NE. 'degrees_N' .AND.
. ax_units(2) .NE. 'latitude' .AND.
. ax_units(2) .NE. 'Latitude' .AND.
. ax_units(2) .NE. 'LATITUDE' ) THEN
WRITE (6,*)'Latitude axis units =', ax_units(2)
!CALL ef_bail_out(id,'Latitude axis must be in degrees')
ENDIF
l1 = arg_lo_ss(T_AXIS,ARG1)
l2 = arg_lo_ss(T_AXIS,ARG2)
DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
k1 = arg_lo_ss(Z_AXIS,ARG1)
k2 = arg_lo_ss(Z_AXIS,ARG2)
DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
ilat = 2
j1 = arg_lo_ss(Y_AXIS,ARG1) + 1
j2 = arg_lo_ss(Y_AXIS,ARG2) + 1
DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
cst = cos(SNGL(yT(iLat)) * Degrees_to_radians)
iLon = 2
i1 = arg_lo_ss(X_AXIS,ARG1) + 1
i2 = arg_lo_ss(X_AXIS,ARG2) + 1
DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
IF (
. arg_1(i1, j1, k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1+1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1-1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1, j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1+1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1-1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1, j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1+1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_1(i1-1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR.
. arg_2(i2, j2, k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2+1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2-1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2, j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2+1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2-1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2, j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2+1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR.
. arg_2(i2-1,j2-1,k2,l2) .EQ. bad_flag(ARG2)
. )THEN
result(i,j,k,l) = bad_flag_result
ELSE
result(i,j,k,l) =
. - (adv_fe(i1,j1,k1,l1,i2,j2,k2,l2,iLat) -
. adv_fe(i1-1,j1,k1,l1,i2-1,j2,k2,l2,iLat))
. /2./dxt(iLon)/cst*sec_per_month
ENDIF
iLon = iLon + 1
i1 = i1 + arg_incr(X_AXIS,ARG1)
i2 = i2 + arg_incr(X_AXIS,ARG2)
ENDDO
iLat = iLat + 1
j1 = j1 + arg_incr(Y_AXIS,ARG1)
j2 = j2 + arg_incr(Y_AXIS,ARG2)
ENDDO
k1 = k1 + arg_incr(Z_AXIS,ARG1)
k2 = k2 + arg_incr(Z_AXIS,ARG2)
ENDDO
l1 = l1 + arg_incr(T_AXIS,ARG1)
l2 = l2 + arg_incr(T_AXIS,ARG2)
ENDDO
END
|