1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
*
* neutral.F
*
* John Donners
* Jun 19th 2002
*
* Returns neutral density
*
* On a SUN Solaris system compile with:
*
* f77 -PIC -G -z text -z muldefs neutral.F gamma.a /opt/SUNWspro/lib/libM77.so
* /opt/SUNWspro/lib/lib{f77compat,fsu}.so -o neutral.so
*
* The gamma library (gamma.a) should be compiled with the -KPIC option.
* Make sure all libraries are 32 bits compiled (without the -xarch=v9 flag)
* Make sure the file gamma.nc is with the exact path in read-nc.F
* Changed code in gamma-n.f. Now also complains about out of oceanographic
* range, but doesn't quit anymore. Instead now returns -99.2, and jumps to
* the end of the subroutine
* The gamma library can be found at:
* ftp://ftp.marine.csiro.au/pub/jackett/gamma.tar.Z
*
* In this subroutine we provide information about
* the function. The user configurable information
* consists of the following:
*
* descr Text description of the function
*
* num_args Required number of arguments
*
* axis_inheritance Type of axis for the result
* ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
* CUSTOM - user defined axis
* IMPLIED_BY_ARGS - same axis as the incoming argument
* NORMAL - the result is normal to this axis
* ABSTRACT - an axis which only has index values
*
* piecemeal_ok For memory optimization:
* axes where calculation may be performed piecemeal
* ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name Text name for an argument
*
* unit Text units for an argument
*
* desc Text description of an argument
*
* axis_influence Are this argument's axes the same as the result grid?
* ( YES, NO )
*
* axis_extend How much does Ferret need to extend arg limits relative to result
*
SUBROUTINE neutral_init(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id, arg
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
CALL ef_set_desc(id,' neutral(salinity,temperature) returns'//
. ' neutral density' )
CALL ef_set_num_args(id, 2)
CALL ef_set_has_vari_args(id, NO)
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
arg = 1
CALL ef_set_arg_name(id, arg, 'S')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
arg = 2
CALL ef_set_arg_name(id, arg, 'T')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
CALL ef_set_num_work_arrays(id,3)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
SUBROUTINE neutral_work_size(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
*
* Set the work arrays, X/Y/Z/T dimensions
*
* ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi)
*
INTEGER mz1, mz2, mz3
INTEGER iwork
INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
. arg_incr(4,1:EF_MAX_ARGS)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
* Allocate double the dimension of the input arguments for work arrays
* which will be REAL*8
mz1 = 1 + ABS(arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1))
mz2 = 1 + ABS(arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1))
mz3 = 1 + ABS(arg_hi_ss(Z_AXIS,ARG1) - arg_lo_ss(Z_AXIS,ARG1))
* lon
iwork = 1
CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1,
. 2*mz1, 1, 1, 1)
* lat
iwork = 2
CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1,
. 1, 2*mz2, 1, 1)
* z
iwork = 3
CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1,
. 1, 1, 2*mz3, 1)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we compute the result
*
SUBROUTINE neutral_compute(id, arg_1, arg_2, result)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
REAL bad_flag(EF_MAX_ARGS), bad_flag_result
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
. mem1loz:mem1hiz, mem1lot:mem1hit)
REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
. mem2loz:mem2hiz, mem2lot:mem2hit)
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit)
REAL*8 lon(wrk1lox:wrk1hix/2,wrk1loy:wrk1hiy,wrk1loz:wrk1hiz,
. wrk1lot:wrk1hit)
REAL*8 lat(wrk2lox:wrk2hix,wrk2loy:wrk2hiy/2,wrk2loz:wrk2hiz,
. wrk2lot:wrk2hit)
REAL*8 depth(wrk3lox:wrk3hix,wrk3loy:wrk3hiy,wrk3loz:wrk3hiz/2,
. wrk3lot:wrk3hit)
* After initialization, the 'res_' arrays contain indexing information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.
INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
INTEGER i,j,k,l
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2
INTEGER ilon, jlat, kdepth
REAL*8 dum1,dum2, res
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
CALL ef_get_coordinates(id, ARG1, X_AXIS,
. arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1), lon)
CALL ef_get_coordinates(id, ARG1, Y_AXIS,
. arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1), lat)
CALL ef_get_coordinates(id, ARG1, Z_AXIS,
. arg_lo_ss(Z_AXIS, ARG1), arg_hi_ss(Z_AXIS, ARG1), depth)
i1 = arg_lo_ss(X_AXIS,ARG1)
i2 = arg_lo_ss(X_AXIS,ARG2)
ilon = 1
DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
j1 = arg_lo_ss(Y_AXIS,ARG1)
j2 = arg_lo_ss(Y_AXIS,ARG2)
jlat = 1
DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
k1 = arg_lo_ss(Z_AXIS,ARG1)
k2 = arg_lo_ss(Z_AXIS,ARG2)
kdepth = 1
DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
l1 = arg_lo_ss(T_AXIS,ARG1)
l2 = arg_lo_ss(T_AXIS,ARG2)
DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
IF ( arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) .OR.
. arg_2(i2,j2,k2,l2) .EQ. bad_flag(2) ) THEN
result(i,j,k,l) = bad_flag_result
ELSE
call gamma_n(dble(arg_1(i1,j1,k1,l1)),
. dble(arg_2(i2,j2,k2,l2)),depth(1,1,kdepth,1),1,
. lon(ilon,1,1,1),lat(1,jlat,1,1),res,dum1,dum2)
c print*,'s,t,p,lon,lat,res=',
c . dble(arg_1(i1,j1,k1,l1)),
c . dble(arg_2(i2,j2,k2,l2)),depth(1,1,kdepth,1),
c . lon(ilon,1,1,1),lat(1,jlat,1,1),res
result(i,j,k,l)=real(res)
END IF
l1 = l1 + arg_incr(T_AXIS,ARG1)
l2 = l2 + arg_incr(T_AXIS,ARG2)
100 CONTINUE
k1 = k1 + arg_incr(Z_AXIS,ARG1)
k2 = k2 + arg_incr(Z_AXIS,ARG2)
kdepth = kdepth + 1
200 CONTINUE
j1 = j1 + arg_incr(Y_AXIS,ARG1)
j2 = j2 + arg_incr(Y_AXIS,ARG2)
jlat = jlat + 1
300 CONTINUE
i1 = i1 + arg_incr(X_AXIS,ARG1)
i2 = i2 + arg_incr(X_AXIS,ARG2)
ilon = ilon + 1
400 CONTINUE
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
|