File: neutral.F

package info (click to toggle)
pyferret 7.6.5-10
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 138,136 kB
  • sloc: fortran: 240,609; ansic: 25,235; python: 24,026; sh: 1,618; makefile: 1,123; pascal: 569; csh: 307; awk: 18
file content (272 lines) | stat: -rw-r--r-- 9,347 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
*
*  neutral.F
*
*  John Donners
*  Jun 19th 2002
*
*  Returns neutral density
*
* On a SUN Solaris system compile with:
*
* f77 -PIC -G -z text -z muldefs neutral.F gamma.a /opt/SUNWspro/lib/libM77.so
* /opt/SUNWspro/lib/lib{f77compat,fsu}.so -o neutral.so
*
* The gamma library (gamma.a) should be compiled with the -KPIC option.
* Make sure all libraries are 32 bits compiled (without the -xarch=v9 flag)
* Make sure the file gamma.nc is with the exact path in read-nc.F
* Changed code in gamma-n.f. Now also complains about out of oceanographic
* range, but doesn't quit anymore. Instead now returns -99.2, and jumps to
* the end of the subroutine
* The gamma library can be found at:
* ftp://ftp.marine.csiro.au/pub/jackett/gamma.tar.Z
*
*  In this subroutine we provide information about
*  the function.  The user configurable information
*  consists of the following:
*
*  descr              Text description of the function
*
*  num_args           Required number of arguments
*
*  axis_inheritance   Type of axis for the result
*                        ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
*                        CUSTOM          - user defined axis
*                        IMPLIED_BY_ARGS - same axis as the incoming argument
*                        NORMAL          - the result is normal to this axis
*                        ABSTRACT        - an axis which only has index values
*
*  piecemeal_ok       For memory optimization:
*                        axes where calculation may be performed piecemeal
*                        ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name               Text name for an argument
*
* unit               Text units for an argument
*
* desc               Text description of an argument
*
* axis_influence     Are this argument's axes the same as the result grid?
*                       ( YES, NO )
*
* axis_extend       How much does Ferret need to extend arg limits relative to result
*


      SUBROUTINE neutral_init(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id, arg

* **********************************************************************
*                                            USER CONFIGURABLE PORTION |
*                                                                      |
*                                                                      V

      CALL ef_set_desc(id,' neutral(salinity,temperature) returns'//
     .  ' neutral density' )

      CALL ef_set_num_args(id, 2)
      CALL ef_set_has_vari_args(id, NO)
      CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
     .     IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
      CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)

      arg = 1
      CALL ef_set_arg_name(id, arg, 'S')
      CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

      arg = 2
      CALL ef_set_arg_name(id, arg, 'T')
      CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

      CALL ef_set_num_work_arrays(id,3)
*                                                                      ^
*                                                                      |
*                                            USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN
      END

      SUBROUTINE neutral_work_size(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'
      INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

      INTEGER id

* **********************************************************************
*                                            USER CONFIGURABLE PORTION |
*                                                                      |
*                                                                      V

*
* Set the work arrays,  X/Y/Z/T dimensions
*
* ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi)
*
      INTEGER mz1, mz2, mz3

      INTEGER iwork
      INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
     .     arg_incr(4,1:EF_MAX_ARGS)

      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

*  Allocate double the dimension of the input arguments for work arrays
*  which will be REAL*8

      mz1 = 1 + ABS(arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1))
      mz2 = 1 + ABS(arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1))
      mz3 = 1 + ABS(arg_hi_ss(Z_AXIS,ARG1) - arg_lo_ss(Z_AXIS,ARG1))


*  lon
      iwork = 1
      CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1,
     .   2*mz1, 1, 1, 1)

*  lat
      iwork = 2
      CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1,
     .   1, 2*mz2, 1, 1)

*  z
      iwork = 3
      CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1,
     .   1, 1, 2*mz3, 1)

*                                                                      ^
*                                                                      |
*                                            USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN
      END


*
*  In this subroutine we compute the result
*
      SUBROUTINE neutral_compute(id, arg_1, arg_2, result)

      INCLUDE 'ferret_cmn/EF_Util.cmn'
      INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

      INTEGER id

      REAL bad_flag(EF_MAX_ARGS), bad_flag_result
      REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
     .     mem1loz:mem1hiz, mem1lot:mem1hit)
      REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
     .     mem2loz:mem2hiz, mem2lot:mem2hit)
      REAL result(memreslox:memreshix, memresloy:memreshiy,
     .     memresloz:memreshiz, memreslot:memreshit)

      REAL*8 lon(wrk1lox:wrk1hix/2,wrk1loy:wrk1hiy,wrk1loz:wrk1hiz,
     .  wrk1lot:wrk1hit)
      REAL*8 lat(wrk2lox:wrk2hix,wrk2loy:wrk2hiy/2,wrk2loz:wrk2hiz,
     .  wrk2lot:wrk2hit)
      REAL*8 depth(wrk3lox:wrk3hix,wrk3loy:wrk3hiy,wrk3loz:wrk3hiz/2,
     .  wrk3lot:wrk3hit)

* After initialization, the 'res_' arrays contain indexing information
* for the result axes.  The 'arg_' arrays will contain the indexing
* information for each variable's axes.

      INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
      INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
     .     arg_incr(4,EF_MAX_ARGS)


* **********************************************************************
*                                            USER CONFIGURABLE PORTION |
*                                                                      |
*                                                                      V

      INTEGER i,j,k,l
      INTEGER i1, j1, k1, l1
      INTEGER i2, j2, k2, l2
      INTEGER ilon, jlat, kdepth
      REAL*8 dum1,dum2, res

      CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
      CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

      CALL ef_get_coordinates(id, ARG1, X_AXIS,
     .   arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1), lon)
      CALL ef_get_coordinates(id, ARG1, Y_AXIS,
     .   arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1), lat)
      CALL ef_get_coordinates(id, ARG1, Z_AXIS,
     .   arg_lo_ss(Z_AXIS, ARG1), arg_hi_ss(Z_AXIS, ARG1), depth)

      i1 = arg_lo_ss(X_AXIS,ARG1)
      i2 = arg_lo_ss(X_AXIS,ARG2)
      ilon = 1
      DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

         j1 = arg_lo_ss(Y_AXIS,ARG1)
         j2 = arg_lo_ss(Y_AXIS,ARG2)
         jlat = 1
         DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

            k1 = arg_lo_ss(Z_AXIS,ARG1)
            k2 = arg_lo_ss(Z_AXIS,ARG2)
            kdepth = 1
            DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

            l1 = arg_lo_ss(T_AXIS,ARG1)
            l2 = arg_lo_ss(T_AXIS,ARG2)
            DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)


                  IF ( arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) .OR.
     .                 arg_2(i2,j2,k2,l2) .EQ. bad_flag(2) ) THEN

                     result(i,j,k,l) = bad_flag_result

                  ELSE

                     call gamma_n(dble(arg_1(i1,j1,k1,l1)),
     .                 dble(arg_2(i2,j2,k2,l2)),depth(1,1,kdepth,1),1,
     .                 lon(ilon,1,1,1),lat(1,jlat,1,1),res,dum1,dum2)
c                     print*,'s,t,p,lon,lat,res=',
c     .                 dble(arg_1(i1,j1,k1,l1)),
c     .                 dble(arg_2(i2,j2,k2,l2)),depth(1,1,kdepth,1),
c     .                 lon(ilon,1,1,1),lat(1,jlat,1,1),res
                     result(i,j,k,l)=real(res)
                  END IF


                  l1 = l1 + arg_incr(T_AXIS,ARG1)
                  l2 = l2 + arg_incr(T_AXIS,ARG2)
 100           CONTINUE

               k1 = k1 + arg_incr(Z_AXIS,ARG1)
               k2 = k2 + arg_incr(Z_AXIS,ARG2)
               kdepth = kdepth + 1
 200        CONTINUE

            j1 = j1 + arg_incr(Y_AXIS,ARG1)
            j2 = j2 + arg_incr(Y_AXIS,ARG2)
            jlat = jlat + 1
 300     CONTINUE

         i1 = i1 + arg_incr(X_AXIS,ARG1)
         i2 = i2 + arg_incr(X_AXIS,ARG2)
         ilon = ilon + 1
 400  CONTINUE


*                                                                      ^
*                                                                      |
*                                            USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN
      END