1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
*
* convolvei.F
*
* This software was developed by the Thermal Modeling and Analysis
* Project(TMAP) of the National Oceanographic and Atmospheric
* Administration's (NOAA) Pacific Marine Environmental Lab(PMEL),
* hereafter referred to as NOAA/PMEL/TMAP.
*
* Access and use of this software shall impose the following
* obligations and understandings on the user. The user is granted the
* right, without any fee or cost, to use, copy, modify, alter, enhance
* and distribute this software, and any derivative works thereof, and
* its supporting documentation for any purpose whatsoever, provided
* that this entire notice appears in all copies of the software,
* derivative works and supporting documentation. Further, the user
* agrees to credit NOAA/PMEL/TMAP in any publications that result from
* the use of this software or in any product that includes this
* software. The names TMAP, NOAA and/or PMEL, however, may not be used
* in any advertising or publicity to endorse or promote any products
* or commercial entity unless specific written permission is obtained
* from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP
* is not obligated to provide the user with any support, consulting,
* training or assistance of any kind with regard to the use, operation
* and performance of this software nor to provide the user with any
* updates, revisions, new versions or "bug fixes".
*
* THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
** Ansley Manke
* Feb 1999
*
* This external function convolves the component grid, com, with the weight
* function, wt along the I axis (see Ferret routine CONVOLVE)
*
*
* In this subroutine we provide information about
* the function. The user configurable information
* consists of the following:
*
* descr Text description of the function
*
* num_args Required number of arguments
*
* axis_inheritance Type of axis for the result
* ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
* CUSTOM - user defined axis
* IMPLIED_BY_ARGS - same axis as the incoming argument
* NORMAL - the result is normal to this axis
* ABSTRACT - an axis which only has index values
*
* piecemeal_ok For memory optimization:
* axes where calculation may be performed piecemeal
* ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name Text name for an argument
*
* unit Text units for an argument
*
* desc Text description of an argument
*
* axis_influence Are this argument's axes the same as the result grid?
* ( YES, NO )
*
* axis_extend How much does Ferret need to extend arg limits relative to result
*
SUBROUTINE convolvei_init(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id, arg
***********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
CHARACTER*100 fcn_desc
WRITE (fcn_desc, 10)
10 FORMAT ('Convolve I component of variable with weight function')
CALL ef_set_desc(id, fcn_desc)
CALL ef_set_num_args(id, 2)
CALL ef_set_has_vari_args(id, NO)
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
arg = 1
CALL ef_set_arg_name(id, arg, 'COM')
CALL ef_set_arg_desc(id, arg,
. 'Variable in X (and perhaps Y,Z,T) to convolve')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
arg = 2
CALL ef_set_arg_name(id, arg, 'WEIGHT')
CALL ef_set_arg_desc(id, arg, 'Weight function')
CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO)
* ^
* |
* USER CONFIGURABLE PORTION |
***********************************************************************
RETURN
END
*
* In this subroutine we compute the result
*
SUBROUTINE convolvei_compute (id, arg_1, arg_2, result )
*
*
* From FERRET subroutine CONVOLVE, for the i-axis.
*
* convolve the component grid, com, with the weight function, wt
* along axis idim
* note: the component context may not be of adequate size for the full
* calculation. Missing data flags will be inserted where computation is
* impossible
* also: when bad data points are encountered in the component data all
* result data depending on it are flagged as bad, too
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
REAL bad_flag(EF_MAX_ARGS), bad_flag_result
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
. mem1lot:mem1hit)
REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz,
. mem2lot:mem2hit)
.
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit)
* After initialization, the 'res_' arrays contain indexing information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.
INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
***********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
REAL comp, sum, weight
REAL xlen, ylen, zlen, tlen
INTEGER i, j, k, l
INTEGER hlen, ii, wlen
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
* CONVOLVE ALONG X AXIS (arg_1) using weights (arg_2)
* Half the weighting function; weights from -hlen to hlen.
xlen = (arg_hi_ss(X_AXIS,ARG2) - arg_lo_ss(X_AXIS,ARG2) + 1)
ylen = (arg_hi_ss(Y_AXIS,ARG2) - arg_lo_ss(Y_AXIS,ARG2) + 1)
zlen = (arg_hi_ss(Z_AXIS,ARG2) - arg_lo_ss(Z_AXIS,ARG2) + 1)
tlen = (arg_hi_ss(T_AXIS,ARG2) - arg_lo_ss(T_AXIS,ARG2) + 1)
wlen = max(xlen, ylen, zlen, tlen)
IF (MOD(wlen,2) .EQ. 0) wlen = wlen + 1
hlen = wlen/ 2
j1 = arg_lo_ss(Y_AXIS,ARG1)
DO 500 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
k1 = arg_lo_ss(Z_AXIS,ARG1)
DO 400 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
l1 = arg_lo_ss(T_AXIS,ARG1)
DO 300 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
i1 = arg_lo_ss(X_AXIS,ARG1)
DO 200 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
sum = 0.0
i2 = arg_lo_ss(X_AXIS,ARG2)
j2 = arg_lo_ss(Y_AXIS,ARG2)
k2 = arg_lo_ss(Z_AXIS,ARG2)
l2 = arg_lo_ss(T_AXIS,ARG2)
DO 100 ii = -hlen, hlen
IF (i1+ii .LT. arg_lo_ss(X_AXIS,ARG1) .OR.
. i1+ii .GT. arg_hi_ss(X_AXIS,ARG1) ) THEN
result(i,j,k,l) = bad_flag_result
GOTO 190
ELSE
comp = arg_1(i1+ii,j1,k1,l1)
IF (i2 .LT. arg_lo_ss(X_AXIS,ARG2) .OR.
. i2 .GT. arg_hi_ss(X_AXIS,ARG2) .OR.
. j2 .LT. arg_lo_ss(Y_AXIS,ARG2) .OR.
. j2 .GT. arg_hi_ss(X_AXIS,ARG2) .OR.
. k2 .LT. arg_lo_ss(Z_AXIS,ARG2) .OR.
. k2 .GT. arg_hi_ss(Z_AXIS,ARG2) .OR.
. l2 .LT. arg_lo_ss(T_AXIS,ARG2) .OR.
. l2 .GT. arg_hi_ss(T_AXIS,ARG2)) THEN
weight = 0.
ELSE
weight = arg_2(i2,j2,k2,l2)
ENDIF
IF ( comp .EQ. bad_flag(ARG1)) THEN
GOTO 190
ELSE
sum = sum + comp* weight
ENDIF
ENDIF
i2 = i2 + arg_incr(X_AXIS,ARG2)
j2 = j2 + arg_incr(Y_AXIS,ARG2)
k2 = k2 + arg_incr(Z_AXIS,ARG2)
l2 = l2 + arg_incr(T_AXIS,ARG2)
100 CONTINUE
result(i,j,k,l) = sum
190 i1 = i1 + arg_incr(X_AXIS,ARG1)
200 CONTINUE
l1 = l1 + arg_incr(T_AXIS,ARG1)
300 CONTINUE
k1 = k1 + arg_incr(Z_AXIS,ARG1)
400 CONTINUE
j1 = j1 + arg_incr(Y_AXIS,ARG1)
500 CONTINUE
RETURN
END
|