File: appende.F

package info (click to toggle)
pyferret 7.6.5-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 138,136 kB
  • sloc: fortran: 240,609; ansic: 25,235; python: 24,026; sh: 1,618; makefile: 1,123; pascal: 569; csh: 307; awk: 18
file content (288 lines) | stat: -rw-r--r-- 9,394 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
*
* appende.F
*
* This function creates a new variable which is the first variable
* with the second variable appended on the ensemble axis.
*


*
* In this subroutine we provide information about
* the function.  The user configurable information
* consists of the following:
*
* descr              Text description of the function
*
* num_args           Required number of arguments
*
* axis_inheritance   Type of axis for the result
*                       ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
*                       CUSTOM          - user defined axis
*                       IMPLIED_BY_ARGS - same axis as the incoming argument
*                       NORMAL          - the result is normal to this axis
*                       ABSTRACT        - an axis which only has index values
*
* piecemeal_ok       For memory optimization:
*                       axes where calculation may be performed piecemeal
*                       ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name               Text name for an argument
*
* unit               Text units for an argument
*
* desc               Text description of an argument
*
* axis_influence     Are this argument's axes the same as the result grid?
*                       ( YES, NO )
*
* axis_extend       How much does Ferret need to extend arg limits relative to result
*


      SUBROUTINE appende_init(id)

      IMPLICIT NONE
      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id, arg



* **********************************************************************
*                                            USER CONFIGURABLE PORTION |
*                                                                      |
*                                                                      V

      CALL ef_set_desc(id,
     .        'appends VAR to ENS along the ensemble axis')
      CALL ef_set_num_args(id, 2)
      CALL ef_set_axis_inheritance_6d(id,
     .                                IMPLIED_BY_ARGS, IMPLIED_BY_ARGS,
     .                                IMPLIED_BY_ARGS, IMPLIED_BY_ARGS,
     .                                CUSTOM,          IMPLIED_BY_ARGS)
      CALL ef_set_piecemeal_ok_6d(id, NO, NO, NO, NO, NO, NO)

      arg = 1
      CALL ef_set_arg_name(id, arg, 'ENS')
      CALL ef_set_arg_desc(id, arg, 'Initial variable')
      CALL ef_set_axis_influence_6d(id, arg,
     .                              YES, YES, YES, YES, NO, YES)

      arg = 2
      CALL ef_set_arg_name(id, arg, 'VAR')
      CALL ef_set_arg_desc(id, arg, 'Variable to append')
      CALL ef_set_axis_influence_6d(id, arg,
     .                              YES, YES, YES, YES, NO, YES)

*                                                                      ^
*                                                                      |
*                                            USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN
      END


*
* In this subroutine we provide information about the custom axis.
*

      SUBROUTINE appende_custom_axes(id)

      IMPLICIT NONE
      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id

* **********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V

      INTEGER arg_lo_ss(6,EF_MAX_ARGS),
     .        arg_hi_ss(6,EF_MAX_ARGS),
     .        arg_incr (6,EF_MAX_ARGS)
      REAL my_lo, my_hi, my_delta
      CHARACTER*20 my_units

      CALL ef_get_arg_subscripts_6d(id, arg_lo_ss, arg_hi_ss, arg_incr)

      IF ( (arg_lo_ss(E_AXIS,ARG1) .EQ. ef_unspecified_int4) .AND.
     .     (arg_hi_ss(E_AXIS,ARG1) .EQ. ef_unspecified_int4) ) THEN
         my_lo = 1.0
         my_hi = 1.0
      ELSE
         my_lo = arg_lo_ss(E_AXIS,ARG1)
         my_hi = arg_hi_ss(E_AXIS,ARG1)
      ENDIF
      my_hi = my_hi + 
     .        arg_hi_ss(E_AXIS,ARG2) - arg_lo_ss(E_AXIS,ARG2) + 1.0
      my_delta = 1.0
      my_units = ' '

      CALL ef_set_custom_axis(id, E_AXIS, my_lo, my_hi,
     .                        my_delta, my_units, NO)

*                                                                     ^
*                                                                     |
*                                           USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN 
      END


*
* In this subroutine we compute the result
*
      SUBROUTINE appende_compute(id, arg_1, arg_2, result)

      IMPLICIT NONE
      INCLUDE 'ferret_cmn/EF_Util.cmn'
      INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

      INTEGER id

      REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
     .           mem1lot:mem1hit, mem1loe:mem1hie, mem1lof:mem1hif)
      REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz,
     .           mem2lot:mem2hit, mem2loe:mem2hie, mem2lof:mem2hif)

      REAL result(memreslox:memreshix, memresloy:memreshiy,
     .            memresloz:memreshiz, memreslot:memreshit,
     .            memresloe:memreshie, memreslof:memreshif)

* After initialization, the 'res_' arrays contain indexing information
* for the result axes.  The 'arg_' arrays will contain the indexing
* information for each variable's axes.

      INTEGER res_lo_ss(6),
     .        res_hi_ss(6),
     .        res_incr (6)
      INTEGER arg_lo_ss(6,EF_MAX_ARGS),
     .        arg_hi_ss(6,EF_MAX_ARGS),
     .        arg_incr (6,EF_MAX_ARGS)

      REAL bad_flag(EF_MAX_ARGS), bad_flag_result

* **********************************************************************
*                                            USER CONFIGURABLE PORTION |
*                                                                      |
*                                                                      V

      INTEGER i,  j,  k,  l,  m,  n
      INTEGER i1, j1, k1, l1, m1, n1
      INTEGER i2, j2, k2, l2, m2, n2

      CALL ef_get_res_subscripts_6d(id, res_lo_ss, res_hi_ss, res_incr)
      CALL ef_get_arg_subscripts_6d(id, arg_lo_ss, arg_hi_ss, arg_incr)
      CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

*     Initialize everything to undefined so nothing is missed
      DO 10 n = res_lo_ss(F_AXIS), res_hi_ss(F_AXIS)
      DO 10 m = res_lo_ss(E_AXIS), res_hi_ss(E_AXIS)
      DO 10 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
      DO 10 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
      DO 10 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
      DO 10 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
         result(i,j,k,l,m,n) = bad_flag_result
  10  CONTINUE

*     Start by copying the first variable
*     (Ensemble axis must be outer-most loop)
      m = res_lo_ss(E_AXIS)
      DO 510 m1 = arg_lo_ss(E_AXIS,ARG1), arg_hi_ss(E_AXIS,ARG1)

         n1 = arg_lo_ss(F_AXIS,ARG1)
         DO 610 n = res_lo_ss(F_AXIS), res_hi_ss(F_AXIS)

         l1 = arg_lo_ss(T_AXIS,ARG1)
         DO 410 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

         k1 = arg_lo_ss(Z_AXIS,ARG1)
         DO 310 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

         j1 = arg_lo_ss(Y_AXIS,ARG1)
         DO 210 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

         i1 = arg_lo_ss(X_AXIS,ARG1)
         DO 110 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

            IF ( arg_1(i1,j1,k1,l1,m1,n1) .NE. bad_flag(ARG1) ) THEN

               result(i,j,k,l,m,n) = arg_1(i1,j1,k1,l1,m1,n1)

            END IF

            i1 = i1 + arg_incr(X_AXIS,ARG1)
 110     CONTINUE

            j1 = j1 + arg_incr(Y_AXIS,ARG1)
 210     CONTINUE

            k1 = k1 + arg_incr(Z_AXIS,ARG1)
 310     CONTINUE

            l1 = l1 + arg_incr(T_AXIS,ARG1)
 410     CONTINUE

            n1 = n1 + arg_incr(F_AXIS,ARG1)
 610     CONTINUE

         m = m + 1
 510  CONTINUE

*     Now copy the second variable starting on the ensemble axis
*     where the first variable left off (value of m not reset)

      DO 520 m2 = arg_lo_ss(E_AXIS,ARG2), arg_hi_ss(E_AXIS,ARG2)

         n2 = arg_lo_ss(F_AXIS,ARG2)
         DO 620 n = res_lo_ss(F_AXIS), res_hi_ss(F_AXIS)

         l2 = arg_lo_ss(T_AXIS,ARG2)
         DO 420 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

         k2 = arg_lo_ss(Z_AXIS,ARG2)
         DO 320 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

         j2 = arg_lo_ss(Y_AXIS,ARG2)
         DO 220 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

         i2 = arg_lo_ss(X_AXIS,ARG2)
         DO 120 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

            IF ( arg_2(i2,j2,k2,l2,m2,n2) .NE. bad_flag(ARG2) ) THEN

               result(i,j,k,l,m,n) = arg_2(i2,j2,k2,l2,m2,n2)

            END IF

            i2 = i2 + arg_incr(X_AXIS,ARG2)
 120     CONTINUE

            j2 = j2 + arg_incr(Y_AXIS,ARG2)
 220     CONTINUE

            k2 = k2 + arg_incr(Z_AXIS,ARG2)
 320     CONTINUE

            l2 = l2 + arg_incr(T_AXIS,ARG2)
 420     CONTINUE

            n2 = n2 + arg_incr(F_AXIS,ARG2)
 620     CONTINUE

         m = m + 1
 520  CONTINUE

*                                                                      ^
*                                                                      |
*                                            USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN
      END