1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
*
* appende.F
*
* This function creates a new variable which is the first variable
* with the second variable appended on the ensemble axis.
*
*
* In this subroutine we provide information about
* the function. The user configurable information
* consists of the following:
*
* descr Text description of the function
*
* num_args Required number of arguments
*
* axis_inheritance Type of axis for the result
* ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
* CUSTOM - user defined axis
* IMPLIED_BY_ARGS - same axis as the incoming argument
* NORMAL - the result is normal to this axis
* ABSTRACT - an axis which only has index values
*
* piecemeal_ok For memory optimization:
* axes where calculation may be performed piecemeal
* ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name Text name for an argument
*
* unit Text units for an argument
*
* desc Text description of an argument
*
* axis_influence Are this argument's axes the same as the result grid?
* ( YES, NO )
*
* axis_extend How much does Ferret need to extend arg limits relative to result
*
SUBROUTINE appende_init(id)
IMPLICIT NONE
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id, arg
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
CALL ef_set_desc(id,
. 'appends VAR to ENS along the ensemble axis')
CALL ef_set_num_args(id, 2)
CALL ef_set_axis_inheritance_6d(id,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS,
. CUSTOM, IMPLIED_BY_ARGS)
CALL ef_set_piecemeal_ok_6d(id, NO, NO, NO, NO, NO, NO)
arg = 1
CALL ef_set_arg_name(id, arg, 'ENS')
CALL ef_set_arg_desc(id, arg, 'Initial variable')
CALL ef_set_axis_influence_6d(id, arg,
. YES, YES, YES, YES, NO, YES)
arg = 2
CALL ef_set_arg_name(id, arg, 'VAR')
CALL ef_set_arg_desc(id, arg, 'Variable to append')
CALL ef_set_axis_influence_6d(id, arg,
. YES, YES, YES, YES, NO, YES)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we provide information about the custom axis.
*
SUBROUTINE appende_custom_axes(id)
IMPLICIT NONE
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
INTEGER arg_lo_ss(6,EF_MAX_ARGS),
. arg_hi_ss(6,EF_MAX_ARGS),
. arg_incr (6,EF_MAX_ARGS)
REAL my_lo, my_hi, my_delta
CHARACTER*20 my_units
CALL ef_get_arg_subscripts_6d(id, arg_lo_ss, arg_hi_ss, arg_incr)
IF ( (arg_lo_ss(E_AXIS,ARG1) .EQ. ef_unspecified_int4) .AND.
. (arg_hi_ss(E_AXIS,ARG1) .EQ. ef_unspecified_int4) ) THEN
my_lo = 1.0
my_hi = 1.0
ELSE
my_lo = arg_lo_ss(E_AXIS,ARG1)
my_hi = arg_hi_ss(E_AXIS,ARG1)
ENDIF
my_hi = my_hi +
. arg_hi_ss(E_AXIS,ARG2) - arg_lo_ss(E_AXIS,ARG2) + 1.0
my_delta = 1.0
my_units = ' '
CALL ef_set_custom_axis(id, E_AXIS, my_lo, my_hi,
. my_delta, my_units, NO)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we compute the result
*
SUBROUTINE appende_compute(id, arg_1, arg_2, result)
IMPLICIT NONE
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
. mem1lot:mem1hit, mem1loe:mem1hie, mem1lof:mem1hif)
REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz,
. mem2lot:mem2hit, mem2loe:mem2hie, mem2lof:mem2hif)
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit,
. memresloe:memreshie, memreslof:memreshif)
* After initialization, the 'res_' arrays contain indexing information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.
INTEGER res_lo_ss(6),
. res_hi_ss(6),
. res_incr (6)
INTEGER arg_lo_ss(6,EF_MAX_ARGS),
. arg_hi_ss(6,EF_MAX_ARGS),
. arg_incr (6,EF_MAX_ARGS)
REAL bad_flag(EF_MAX_ARGS), bad_flag_result
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
INTEGER i, j, k, l, m, n
INTEGER i1, j1, k1, l1, m1, n1
INTEGER i2, j2, k2, l2, m2, n2
CALL ef_get_res_subscripts_6d(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts_6d(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
* Initialize everything to undefined so nothing is missed
DO 10 n = res_lo_ss(F_AXIS), res_hi_ss(F_AXIS)
DO 10 m = res_lo_ss(E_AXIS), res_hi_ss(E_AXIS)
DO 10 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
DO 10 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
DO 10 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
DO 10 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
result(i,j,k,l,m,n) = bad_flag_result
10 CONTINUE
* Start by copying the first variable
* (Ensemble axis must be outer-most loop)
m = res_lo_ss(E_AXIS)
DO 510 m1 = arg_lo_ss(E_AXIS,ARG1), arg_hi_ss(E_AXIS,ARG1)
n1 = arg_lo_ss(F_AXIS,ARG1)
DO 610 n = res_lo_ss(F_AXIS), res_hi_ss(F_AXIS)
l1 = arg_lo_ss(T_AXIS,ARG1)
DO 410 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
k1 = arg_lo_ss(Z_AXIS,ARG1)
DO 310 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
j1 = arg_lo_ss(Y_AXIS,ARG1)
DO 210 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
i1 = arg_lo_ss(X_AXIS,ARG1)
DO 110 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
IF ( arg_1(i1,j1,k1,l1,m1,n1) .NE. bad_flag(ARG1) ) THEN
result(i,j,k,l,m,n) = arg_1(i1,j1,k1,l1,m1,n1)
END IF
i1 = i1 + arg_incr(X_AXIS,ARG1)
110 CONTINUE
j1 = j1 + arg_incr(Y_AXIS,ARG1)
210 CONTINUE
k1 = k1 + arg_incr(Z_AXIS,ARG1)
310 CONTINUE
l1 = l1 + arg_incr(T_AXIS,ARG1)
410 CONTINUE
n1 = n1 + arg_incr(F_AXIS,ARG1)
610 CONTINUE
m = m + 1
510 CONTINUE
* Now copy the second variable starting on the ensemble axis
* where the first variable left off (value of m not reset)
DO 520 m2 = arg_lo_ss(E_AXIS,ARG2), arg_hi_ss(E_AXIS,ARG2)
n2 = arg_lo_ss(F_AXIS,ARG2)
DO 620 n = res_lo_ss(F_AXIS), res_hi_ss(F_AXIS)
l2 = arg_lo_ss(T_AXIS,ARG2)
DO 420 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
k2 = arg_lo_ss(Z_AXIS,ARG2)
DO 320 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
j2 = arg_lo_ss(Y_AXIS,ARG2)
DO 220 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
i2 = arg_lo_ss(X_AXIS,ARG2)
DO 120 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
IF ( arg_2(i2,j2,k2,l2,m2,n2) .NE. bad_flag(ARG2) ) THEN
result(i,j,k,l,m,n) = arg_2(i2,j2,k2,l2,m2,n2)
END IF
i2 = i2 + arg_incr(X_AXIS,ARG2)
120 CONTINUE
j2 = j2 + arg_incr(Y_AXIS,ARG2)
220 CONTINUE
k2 = k2 + arg_incr(Z_AXIS,ARG2)
320 CONTINUE
l2 = l2 + arg_incr(T_AXIS,ARG2)
420 CONTINUE
n2 = n2 + arg_incr(F_AXIS,ARG2)
620 CONTINUE
m = m + 1
520 CONTINUE
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
|