1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
*
* samplej_multi.F
*
* Ansley Manke
* May 1998
*
* This function samples data along the J axis using a set of indices
* 4/5/99 Ansley Manke
* Indices may be oriented along any axis;
* Result is abstract on the sampled axis.
*
*
*
* In this subroutine we provide information about
* the function. The user configurable information
* consists of the following:
*
* descr Text description of the function
*
* num_args Required number of arguments
*
* axis_inheritance Type of axis for the result
* ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
* CUSTOM - user defined axis
* IMPLIED_BY_ARGS - same axis as the incoming argument
* NORMAL - the result is normal to this axis
* ABSTRACT - an axis which only has index values
*
* piecemeal_ok For memory optimization:
* axes where calculation may be performed piecemeal
* ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name Text name for an argument
*
* unit Text units for an argument
*
* desc Text description of an argument
*
* axis_influence Are this argument's axes the same as the result grid?
* ( YES, NO )
*
* axis_extend How much does Ferret need to extend arg limits relative to result
*
SUBROUTINE samplej_multi_init(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id, arg
***********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
CHARACTER*100 fcn_desc
WRITE (fcn_desc, 10)
10 FORMAT ('Returns data sampled according to J indices which ',
. 'may vary in IKL')
CALL ef_set_desc(id, fcn_desc)
CALL ef_set_num_args(id, 2)
CALL ef_set_has_vari_args(id, NO)
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. ABSTRACT, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
arg = 1
CALL ef_set_arg_name(id, arg, 'J_INDICES')
CALL ef_set_arg_desc(id, arg, 'ordered indices')
CALL ef_set_axis_influence(id, arg, YES, NO, YES, YES)
arg = 2
CALL ef_set_arg_name(id, arg, 'DAT_TO_SAMPLE')
CALL ef_set_arg_desc(id, arg, 'data to sample using J indices')
CALL ef_set_axis_influence(id, arg, YES, NO, YES, YES)
* ^
* |
* USER CONFIGURABLE PORTION |
***********************************************************************
RETURN
END
*
* In this subroutine we provide information about the lo and hi
* limits associated with each abstract or custom axis. The user
* configurable information consists of the following:
*
* loss lo subscript for an axis
*
* hiss hi subscript for an axis
*
SUBROUTINE samplej_multi_result_limits(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
INTEGER my_lo_l, my_hi_l
INTEGER nx, ny, nz, nt
* Use utility functions to get context information about the
* 1st argument, to set the abstract axis lo and hi indices.
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
nx = arg_hi_ss(X_AXIS, ARG1) - arg_lo_ss(X_AXIS, ARG1) + 1
ny = arg_hi_ss(Y_AXIS, ARG1) - arg_lo_ss(Y_AXIS, ARG1) + 1
nz = arg_hi_ss(Z_AXIS, ARG1) - arg_lo_ss(Z_AXIS, ARG1) + 1
nt = arg_hi_ss(T_AXIS, ARG1) - arg_lo_ss(T_AXIS, ARG1) + 1
my_lo_l = 1
my_hi_l = ny
IF (arg_hi_ss(Y_AXIS, ARG1) - arg_lo_ss(Y_AXIS, ARG1) .EQ. 0)
. my_hi_l = max(nx,ny,nz,nt)
CALL ef_set_axis_limits(id, Y_AXIS, my_lo_l, my_hi_l)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we compute the result
*
SUBROUTINE samplej_multi_compute(id, arg_1, arg_2, result)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
REAL bad_flag(EF_MAX_ARGS), bad_flag_result
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
. mem1lot:mem1hit)
REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz,
. mem2lot:mem2hit)
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit)
* After initialization, the 'res_' arrays contain indexing information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.
INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
***********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
INTEGER id, i, j, k, l
INTEGER i1, j1, k1, l1
INTEGER i2, k2, l2
INTEGER jorder
REAL aorder
INTEGER nlen(3), unspecified_int4
CHARACTER*8 lefint, aindex(3)
CHARACTER*100 errtxt
unspecified_int4 = -111
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
i1 = arg_lo_ss(X_AXIS,ARG1)
i2 = arg_lo_ss(X_AXIS, ARG2)
DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
k1 = arg_lo_ss(Z_AXIS,ARG1)
k2 = arg_lo_ss(Z_AXIS,ARG2)
DO 300 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
l1 = arg_lo_ss(T_AXIS,ARG1)
l2 = arg_lo_ss(T_AXIS,ARG2)
DO 200 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
j1 = arg_lo_ss(Y_AXIS,ARG1)
DO 100 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
* Get the index to sample, whichever axis of arg_1 it is on.
aorder = arg_1(i1,j1,k1,l1)
IF (j1 .EQ. unspecified_int4)
. CALL pickindex(arg_1, j, aorder)
jorder = aorder
* Check that we do have an index of ARG_2; set the result
IF (aorder .EQ. bad_flag(ARG1)) THEN
result(i,j,k,l) = bad_flag_result
ELSE
IF (jorder .LT. arg_lo_ss(Y_AXIS,ARG2) .OR.
. jorder .GT. arg_hi_ss(Y_AXIS,ARG2) ) THEN
GO TO 999
ELSE
IF (arg_2(i2,jorder,k2,l2) .EQ. bad_flag(ARG2))
. THEN
result(i,j,k,l) = bad_flag_result
ELSE
result(i,j,k,l) = arg_2(i2,jorder,k2,l2)
END IF
END IF
END IF
j1 = j1 + arg_incr(Y_AXIS,ARG1)
100 CONTINUE
l1 = l1 + arg_incr(T_AXIS,ARG1)
l2 = l2 + arg_incr(T_AXIS,ARG2)
200 CONTINUE
k1 = k1 + arg_incr(Z_AXIS,ARG1)
k2 = k2 + arg_incr(Z_AXIS,ARG2)
300 CONTINUE
i1 = i1 + arg_incr(X_AXIS,ARG1)
i2 = i2 + arg_incr(X_AXIS,ARG2)
400 CONTINUE
RETURN
999 CONTINUE
aindex(1) = LEFINT(jorder,nlen(1))
aindex(2) = LEFINT(arg_lo_ss(Y_AXIS,ARG2),nlen(2))
aindex(3) = LEFINT(arg_hi_ss(Y_AXIS,ARG2),nlen(3))
WRITE (errtxt,*) 'Sampling index ', aindex(1)(1:nlen(1)),
. ' in ARG1 is outside the range of J indices for ARG2 (',
. aindex(2)(1:nlen(2)), ':', aindex(3)(1:nlen(3)), ')'
CALL EF_BAIL_OUT(id, errtxt)
RETURN
END
* ^
* |
* USER CONFIGURABLE PORTION |
***********************************************************************
SUBROUTINE pickindex(arr, jindex, aorder)
* Get the index to sample, whichever axis of arg_1 it is on. Collapse
* the array to one dimension and return the j'th point.
real arr(*), aorder
integer jindex
aorder = arr(jindex)
return
end
|