File: samplej_multi.F

package info (click to toggle)
pyferret 7.6.5-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 138,136 kB
  • sloc: fortran: 240,609; ansic: 25,235; python: 24,026; sh: 1,618; makefile: 1,123; pascal: 569; csh: 307; awk: 18
file content (273 lines) | stat: -rw-r--r-- 9,352 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
*
* samplej_multi.F
*
* Ansley Manke
* May 1998
*
* This function samples data along the J axis using a set of indices
* 4/5/99  Ansley Manke 
*         Indices may be oriented along any axis; 
*         Result is abstract on the sampled axis.
*
*
*
* In this subroutine we provide information about
* the function.  The user configurable information 
* consists of the following:
*
* descr              Text description of the function
*
* num_args           Required number of arguments
*
* axis_inheritance   Type of axis for the result
*                       ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
*                       CUSTOM          - user defined axis
*                       IMPLIED_BY_ARGS - same axis as the incoming argument
*                       NORMAL          - the result is normal to this axis
*                       ABSTRACT        - an axis which only has index values
*
* piecemeal_ok       For memory optimization:
*                       axes where calculation may be performed piecemeal
*                       ( YES, NO )
* 
*
* For each argument we provide the following information:
*
* name               Text name for an argument
*
* unit               Text units for an argument
*
* desc               Text description of an argument
*
* axis_influence     Are this argument's axes the same as the result grid?
*                       ( YES, NO )
*
* axis_extend       How much does Ferret need to extend arg limits relative to result 
*


      SUBROUTINE samplej_multi_init(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id, arg

***********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V
      CHARACTER*100 fcn_desc
      WRITE (fcn_desc, 10)
   10 FORMAT ('Returns data sampled according to J indices which ',
     . 'may vary in IKL')
      CALL ef_set_desc(id, fcn_desc)


      CALL ef_set_num_args(id, 2)
      CALL ef_set_has_vari_args(id, NO)
      CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, 
     .     ABSTRACT, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
      CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)

      arg = 1
      CALL ef_set_arg_name(id, arg, 'J_INDICES')
      CALL ef_set_arg_desc(id, arg, 'ordered indices')
      CALL ef_set_axis_influence(id, arg, YES, NO, YES, YES)

      arg = 2
      CALL ef_set_arg_name(id, arg, 'DAT_TO_SAMPLE')
      CALL ef_set_arg_desc(id, arg, 'data to sample using J indices')
      CALL ef_set_axis_influence(id, arg, YES, NO, YES, YES)
*                                                                     ^
*                                                                     |
*                                           USER CONFIGURABLE PORTION |
***********************************************************************

      RETURN 
      END


*
* In this subroutine we provide information about the lo and hi
* limits associated with each abstract or custom axis.   The user 
* configurable information consists of the following:
*
* loss               lo subscript for an axis
*
* hiss               hi subscript for an axis
*

      SUBROUTINE samplej_multi_result_limits(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id
      INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
     .     arg_incr(4,EF_MAX_ARGS)

* **********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V

      INTEGER my_lo_l, my_hi_l
      INTEGER nx, ny, nz, nt

*     Use utility functions to get context information about the 
*     1st argument, to set the abstract axis lo and hi indices.

      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

      nx = arg_hi_ss(X_AXIS, ARG1) - arg_lo_ss(X_AXIS, ARG1) + 1
      ny = arg_hi_ss(Y_AXIS, ARG1) - arg_lo_ss(Y_AXIS, ARG1) + 1
      nz = arg_hi_ss(Z_AXIS, ARG1) - arg_lo_ss(Z_AXIS, ARG1) + 1
      nt = arg_hi_ss(T_AXIS, ARG1) - arg_lo_ss(T_AXIS, ARG1) + 1

      my_lo_l = 1
      my_hi_l = ny
      IF (arg_hi_ss(Y_AXIS, ARG1) - arg_lo_ss(Y_AXIS, ARG1) .EQ. 0)
     .    my_hi_l = max(nx,ny,nz,nt)

      CALL ef_set_axis_limits(id, Y_AXIS, my_lo_l, my_hi_l)

*                                                                     ^
*                                                                     |
*                                           USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN 
      END
*
* In this subroutine we compute the result
*
      SUBROUTINE samplej_multi_compute(id, arg_1, arg_2, result)

      INCLUDE 'ferret_cmn/EF_Util.cmn'
      INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

      REAL bad_flag(EF_MAX_ARGS), bad_flag_result
      REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, 
     .     mem1lot:mem1hit)
      REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, 
     .     mem2lot:mem2hit)
      REAL result(memreslox:memreshix, memresloy:memreshiy, 
     .     memresloz:memreshiz, memreslot:memreshit)

* After initialization, the 'res_' arrays contain indexing information 
* for the result axes.  The 'arg_' arrays will contain the indexing 
* information for each variable's axes. 

      INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
      INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
     .     arg_incr(4,EF_MAX_ARGS)


***********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V
      INTEGER id, i, j, k, l
      INTEGER i1, j1, k1, l1
      INTEGER i2, k2, l2
      INTEGER jorder
      REAL aorder

      INTEGER nlen(3), unspecified_int4
      CHARACTER*8 lefint, aindex(3) 
      CHARACTER*100 errtxt

      unspecified_int4 = -111

      CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
      CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

      i1 = arg_lo_ss(X_AXIS,ARG1)
      i2 = arg_lo_ss(X_AXIS, ARG2)
      DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) 

         k1 = arg_lo_ss(Z_AXIS,ARG1)
         k2 = arg_lo_ss(Z_AXIS,ARG2)
         DO 300 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

            l1 = arg_lo_ss(T_AXIS,ARG1)
            l2 = arg_lo_ss(T_AXIS,ARG2)
            DO 200 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

               j1 = arg_lo_ss(Y_AXIS,ARG1)
               DO 100 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

*  Get the index to sample, whichever axis of arg_1 it is on.

                   aorder = arg_1(i1,j1,k1,l1)
                   IF (j1 .EQ. unspecified_int4) 
     .                  CALL pickindex(arg_1, j, aorder)
                  jorder = aorder

*  Check that we do have an index of ARG_2; set the result

                  IF (aorder .EQ. bad_flag(ARG1)) THEN
                     result(i,j,k,l) = bad_flag_result
                  ELSE

                     IF (jorder .LT. arg_lo_ss(Y_AXIS,ARG2)  .OR.
     .                   jorder .GT. arg_hi_ss(Y_AXIS,ARG2) ) THEN
                        GO TO 999
                     ELSE

                        IF (arg_2(i2,jorder,k2,l2) .EQ. bad_flag(ARG2))
     .                   THEN
                           result(i,j,k,l) = bad_flag_result
                        ELSE
                           result(i,j,k,l) = arg_2(i2,jorder,k2,l2)
 
                        END IF
                     END IF
                  END IF

                  j1 = j1 + arg_incr(Y_AXIS,ARG1)
 100           CONTINUE

               l1 = l1 + arg_incr(T_AXIS,ARG1)
               l2 = l2 + arg_incr(T_AXIS,ARG2)
 200        CONTINUE

            k1 = k1 + arg_incr(Z_AXIS,ARG1)
            k2 = k2 + arg_incr(Z_AXIS,ARG2)
 300     CONTINUE

         i1 = i1 + arg_incr(X_AXIS,ARG1)
         i2 = i2 + arg_incr(X_AXIS,ARG2)
 400  CONTINUE
      RETURN 

999   CONTINUE
      aindex(1) = LEFINT(jorder,nlen(1))
      aindex(2) = LEFINT(arg_lo_ss(Y_AXIS,ARG2),nlen(2))
      aindex(3) = LEFINT(arg_hi_ss(Y_AXIS,ARG2),nlen(3))

      WRITE (errtxt,*) 'Sampling index ', aindex(1)(1:nlen(1)), 
     . ' in ARG1 is outside the range of J indices for ARG2 (', 
     .  aindex(2)(1:nlen(2)), ':', aindex(3)(1:nlen(3)), ')'

      CALL EF_BAIL_OUT(id, errtxt)

      RETURN
      END
*                                                                     ^
*                                                                     |
*                                           USER CONFIGURABLE PORTION |
***********************************************************************

      SUBROUTINE pickindex(arr, jindex, aorder)

*  Get the index to sample, whichever axis of arg_1 it is on.  Collapse
*  the array to one dimension and return the j'th point.

      real arr(*), aorder
      integer jindex

      aorder = arr(jindex)

      return
      end