File: sampleyz.F

package info (click to toggle)
pyferret 7.6.5-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 138,136 kB
  • sloc: fortran: 240,609; ansic: 25,235; python: 24,026; sh: 1,618; makefile: 1,123; pascal: 569; csh: 307; awk: 18
file content (543 lines) | stat: -rw-r--r-- 19,195 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
*
* sampleyz.F
*  This software was developed by the Thermal Modeling and Analysis
*  Project(TMAP) of the National Oceanographic and Atmospheric
*  Administration's (NOAA) Pacific Marine Environmental Lab(PMEL),
*  hereafter referred to as NOAA/PMEL/TMAP.
*
*  Access and use of this software shall impose the following
*  obligations and understandings on the user. The user is granted the
*  right, without anx fee or cost, to use, copy, modify, alter, enhance
*  and distribute this software, and anx derivative works thereof, and
*  its supporting documentation for anx purpose whatsoever, provided
*  that this entire notice appears in all copies of the software,
*  derivative works and supporting documentation.  Further, the user
*  agrees to credit NOAA/PMEL/TMAP in anx publications that result from
*  the use of this software or in anx product that includes this
*  software. The names TMAP, NOAA and/or PMEL, however, may not be used
*  in anx advertising or publicity to endorse or promote anx products
*  or commercial entity unless specific written permission is obtained
*  from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP
*  is not obligated to provide the user with anx support, consulting,
*  training or assistance of anx kind with regard to the use, operation
*  and performance of this software nor to provide the user with anx
*  updates, revisions, new versions or "bug fixes".
*
*  THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND Anx EXPRESS
*  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*  ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR Anx SPECIAL,
*  INDIRECT OR CONSEQUENTIAL DAMAGES OR Anx DAMAGES WHATSOEVER
*  RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
*  CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN
*  CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. 
*
* Ansley Manke
* From samplexy.F
* Wednesday, May 02, 2001
* 11-Jan-06 *acm* declare ylo, yhi, zlo, zhi as integer not real
*
* This function samples 4-d data at y and z pts indicated by args 2 and 3
* 
*         Result is abstract on the Y axis, normal on the z axis,
*         and keeps the x and t axes of the input 4-d data.

* In this subroutine we provide information about
* the function.  The user configurable information 
* consists of the following:
*
* descr              Text description of the function
*
* num_args           Required number of arguments
*
* axis_inheritance   Type of axis for the result
*                       ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
*                       CUSTOM          - user defined axis
*                       IMPLIED_BY_ARGS - same axis as the incoming argument
*                       NORMAL          - the result is normal to this axis
*                       ABSTRACT        - an axis which only has index values
*
* piecemeal_ok       For memory optimization:
*                       axes where calculation may be performed piecemeal
*                       ( YES, NO )
* 
*
* For each argument we provide the following information:
*
* name               Text name for an argument
*
* unit               Text units for an argument
*
* desc               Text description of an argument
*
* axis_influence     Are this argument's axes the same as the result grid?
*                       ( YES, NO )
*
* axis_extend       How much does Ferret need to extend arg limits relative to result 
*


      SUBROUTINE sampleyz_init(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id, arg

***********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V
      CHARACTER*100 fcn_desc
      WRITE (fcn_desc, 10)
   10 FORMAT ('Returns data sampled at a set of (Y,X) points, ',
     .   'using linear interpolation')
      CALL ef_set_desc(id, fcn_desc)

      CALL ef_set_num_args(id, 3)
      CALL ef_set_has_vari_args(id, NO)
      CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, ABSTRACT, 
     .     NORMAL, IMPLIED_BY_ARGS)

      CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)

      CALL ef_set_num_work_arrays(id, 2)

      arg = 1
      CALL ef_set_arg_name(id, arg, 'DAT_TO_SAMPLE')
      CALL ef_set_arg_desc(id, arg, 'variable (x,y,z,t) to sample')
      CALL ef_set_axis_influence(id, arg, YES, NO, NO, YES)

      arg = 2
      CALL ef_set_arg_name(id, arg, 'YPTS')
      CALL ef_set_arg_desc(id, arg, 'Y values of sample points')
      CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO)

      arg = 3
      CALL ef_set_arg_name(id, arg, 'ZPTS')
      CALL ef_set_arg_desc(id, arg, 'Z values of sample points')
      CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO)
*                                                                     ^
*                                                                     |
*                                           USER CONFIGURABLE PORTION |
***********************************************************************

      RETURN 
      END

*
* In this subroutine we provide information about the lo and hi
* limits associated with each abstract or custom axis.   The user 
* configurable information consists of the following:
*
* loss               lo subscript for an axis
*
* hiss               hi subscript for an axis
*

      SUBROUTINE sampleyz_result_limits(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'

      INTEGER id
      INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
     .     arg_incr(4,EF_MAX_ARGS)

* **********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V

      INTEGER mz_lo_l, mz_hi_l
      INTEGER nx, ny, nz, nt

*     Use utility functions to get context information about the 
*     1st argument, to set the abstract axis lo and hi indices.

      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

      nx = arg_hi_ss(X_AXIS, ARG2) - arg_lo_ss(X_AXIS, ARG2) + 1
      ny = arg_hi_ss(Y_AXIS, ARG2) - arg_lo_ss(Y_AXIS, ARG2) + 1
      nz = arg_hi_ss(Z_AXIS, ARG2) - arg_lo_ss(Z_AXIS, ARG2) + 1
      nt = arg_hi_ss(T_AXIS, ARG2) - arg_lo_ss(T_AXIS, ARG2) + 1

      mz_lo_l = 1
      mz_hi_l = max(nx,ny)
      mz_hi_l = max(mz_hi_l,nz)
      mz_hi_l = max(mz_hi_l,nt)

      CALL ef_set_axis_limits(id, Y_AXIS, mz_lo_l, mz_hi_l)

*                                                                     ^
*                                                                     |
*                                           USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN 
      END
*
* In this subroutine we request an amount of storage to be supplied
* by Ferret and passed as an additional argument.
*
      SUBROUTINE sampleyz_work_size(id)

      INCLUDE 'ferret_cmn/EF_Util.cmn'
      INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

      INTEGER id

* **********************************************************************
*                                            USER CONFIGURABLE PORTION |
*                                                                      |
*                                                                      V

*
* Set the work arrays,  X/Y/Z/T dimensions
*
* ef_set_work_array_lens(id,array #,ylo,zlo,zlo,tlo,yhi,zhi,zhi,thi)
*
      INTEGER myl, myh, mzl, mzh

      INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
     .     arg_incr(4,1:EF_MAX_ARGS)

      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

*  Allocate double the length of the axes for REAL*8 work arrays.

      myl = arg_lo_ss(Y_AXIS,ARG1)
      mzl = arg_lo_ss(Z_AXIS,ARG1)

      myh = myl + 
     .     2* (arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1) + 1)
      mzh = mzl + 
     .     2* (arg_hi_ss(Z_AXIS,ARG1) - arg_lo_ss(Z_AXIS,ARG1) + 1)

*  yax
      CALL ef_set_work_array_dims (id, 1, myl, 1, 1, 1, myh, 1, 1, 1)

*  zax
      CALL ef_set_work_array_dims (id, 2, mzl, 1, 1, 1, mzh, 1, 1, 1)


*                                                                      ^
*                                                                      |
*                                            USER CONFIGURABLE PORTION |
* **********************************************************************

      RETURN 
      END

*
* In this subroutine we compute the result
*

      SUBROUTINE sampleyz_compute(id, arg_1, arg_2, arg_3, result,
     .       yax, zax)

      INCLUDE 'ferret_cmn/EF_Util.cmn'
      INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

      INTEGER id

      REAL bad_flag(EF_MAX_ARGS), bad_flag_result
      REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
     .     mem1lot:mem1hit)
      REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz,
     .     mem2lot:mem2hit)
      REAL arg_3(mem3lox:mem3hix, mem3loy:mem3hiy, mem3loz:mem3hiz,
     .     mem3lot:mem3hit)
      REAL result(memreslox:memreshix, memresloy:memreshiy,
     .      memresloz:memreshiz, memreslot:memreshit)


* After initialization, the 'res_' arrays contain indexing information
* for the result axes.  The 'arg_' arrays will contain the indexing
* information for each variable's axes.

      INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
      INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
     .     arg_incr(4,EF_MAX_ARGS)

***********************************************************************
*                                           USER CONFIGURABLE PORTION |
*                                                                     |
*                                                                     V
      COMMON /STOR/ mydat, mzdat
      INTEGER mydat, mzdat
      INTEGER ny, nyx, nyy, nyz, nyt
      INTEGER nz, nzx, nzy, nzz, nzt
      INTEGER ndimy, ndimz

*  Set up work arrays

      REAL*8 yax(wrk1lox:wrk1lox+(wrk1hix-wrk1lox)/2,wrk1loy:wrk1hiy,
     .               wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
      REAL*8 zax(wrk2lox:wrk2lox+(wrk2hix-wrk2lox)/2,wrk2loy:wrk2hiy,
     .               wrk2loz:wrk2hiz, wrk2lot:wrk2hit)

      INTEGER i, j, k, l
      INTEGER i1,j1,k1,l1
      INTEGER i2,j2,k2,l2
      INTEGER i3,j3,k3,l3

      INTEGER jmatch, kmatch
      INTEGER jbot, jtop, kbot, ktop
      REAL fbot, ftop, fbb, ftb, fbt, ftt
      REAL ybot, ytop, zbot, ztop
      REAL frac
      CHARACTER*255 err_msg

C  variables for checking axis characteristics (modulo axes)

      CHARACTER ax_name(4)*16, ax_units(4)*16
      LOGICAL backward(4), modulo(4), regular(4)
      REAL delmody, delmodz, ypt, zpt
      INTEGER ylo, yhi, zlo, zhi

      CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
      CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
      CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

      nyx = arg_hi_ss(X_AXIS,ARG2) - arg_lo_ss(X_AXIS,ARG2) + 1
      nyy = arg_hi_ss(Y_AXIS,ARG2) - arg_lo_ss(Y_AXIS,ARG2) + 1
      nyz = arg_hi_ss(Z_AXIS,ARG2) - arg_lo_ss(Z_AXIS,ARG2) + 1
      nyt = arg_hi_ss(T_AXIS,ARG2) - arg_lo_ss(T_AXIS,ARG2) + 1
      ny = max(nyx, nyy, nyz, nyt)

      nzx = arg_hi_ss(X_AXIS,ARG3) - arg_lo_ss(X_AXIS,ARG3) + 1
      nzy = arg_hi_ss(Y_AXIS,ARG3) - arg_lo_ss(Y_AXIS,ARG3) + 1
      nzz = arg_hi_ss(Z_AXIS,ARG3) - arg_lo_ss(Z_AXIS,ARG3) + 1
      nzt = arg_hi_ss(T_AXIS,ARG3) - arg_lo_ss(T_AXIS,ARG3) + 1
      nz = max(nzx, nzy, nzz, nzt)

      ndimy = 0
      ndimz = 0
      DO 110 i = X_AXIS, T_AXIS
         IF (arg_hi_ss(i,ARG2) - arg_lo_ss(i,ARG2) .GT.0) 
     .       ndimy = ndimy + 1
         IF (arg_hi_ss(i,ARG3) - arg_lo_ss(i,ARG3) .GT.0) 
     .       ndimz= ndimz + 1
  110 CONTINUE

      IF (ny .NE. nz   .OR.  ndimy .GT. 1  .OR. ndimz .GT.1) THEN
         WRITE (err_msg, 10)
         GO TO 999
      ENDIF

   10 FORMAT(
     . 'Arguments 2 and 3 must be 1-dimensional lists of equal length')

*  Get y and z coordinates of the data to be sampled.

      CALL ef_get_coordinates(id, ARG1, Y_AXIS,
     .   arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1), yax)
      CALL ef_get_coordinates(id, ARG1, Z_AXIS,
     .   arg_lo_ss(Z_AXIS, ARG1), arg_hi_ss(Z_AXIS, ARG1), zax)

      i2 = arg_lo_ss(X_AXIS,ARG2)
      j2 = arg_lo_ss(Y_AXIS,ARG2)
      k2 = arg_lo_ss(Z_AXIS,ARG2)
      l2 = arg_lo_ss(T_AXIS,ARG2)

      i3 = arg_lo_ss(X_AXIS,ARG3)
      j3 = arg_lo_ss(Y_AXIS,ARG3)
      k3 = arg_lo_ss(Z_AXIS,ARG3)
      l3 = arg_lo_ss(T_AXIS,ARG3)

*  Check to see if input y or z  axis is modulo

      CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, backward, 
     .                       modulo, regular)

      ylo = arg_lo_ss(Y_AXIS,ARG1)
      yhi = arg_hi_ss(Y_AXIS,ARG1)
      zlo = arg_lo_ss(Z_AXIS,ARG1)
      zhi = arg_hi_ss(Z_AXIS,ARG1)

      IF ( modulo(1) ) delmody = yax(yhi,1,1,1) - yax(ylo,1,1,1)
      IF ( modulo(2) ) delmodz = zax(zhi,1,1,1) - zax(zlo,1,1,1)

*  For each (ypt,zpt) pair, search the data array 
*   arg_1 for the nearest higher (y,z) grid coordinates.  Interpolate 
*   in 2 directions for the result.

      i2 = arg_lo_ss(X_AXIS,ARG2)
      j2 = arg_lo_ss(Y_AXIS,ARG2)
      k2 = arg_lo_ss(Z_AXIS,ARG2)
      l2 = arg_lo_ss(T_AXIS,ARG2)

      i3 = arg_lo_ss(X_AXIS,ARG3)
      j3 = arg_lo_ss(Y_AXIS,ARG3)
      k3 = arg_lo_ss(Z_AXIS,ARG3)
      l3 = arg_lo_ss(T_AXIS,ARG3)

      k = res_lo_ss(Z_AXIS)
      DO 500 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

         jbot = ef_unspecified_int4	! Check if ypt points in xax range.
         jmatch = 0

	 ypt = arg_2(i2,j2,k2,l2)
         DO 100 j1 = arg_lo_ss(Y_AXIS,ARG1), arg_hi_ss(Y_AXIS,ARG1)
            IF (ypt .GE. yax(j1,1,1,1)) jbot = j1
            if (ypt .EQ. yax(j1,1,1,1)) jmatch = j1

cbf      may be some derivation from the exact value can be allowed:
cbf      if (ypt - yax(j1,1,1,1)).le.eps)   jmatch = j1

*  Locate the Y point within the range of modulo Y axis 

	    IF (modulo(2)) THEN
	       DO WHILE (ypt .GE. yax(yhi,1,1,1) ) 
                  ypt = ypt - delmody
	       ENDDO
	       DO WHILE (ypt .LT. yax(ylo,1,1,1) )
		  ypt = ypt + delmody
	       ENDDO
	    ENDIF

  100    CONTINUE

         j1 = arg_hi_ss(Y_AXIS,ARG1)
         IF (ypt .GT. yax(j1,1,1,1)) THEN
             jbot = ef_unspecified_int4		! ARG_2 ypt outside of range 
						! (non modulo)
         ENDIF

cbf       for matching the next neighbour is not of interest
         IF (jmatch .NE. 0) then
            jtop = jbot
         ELSE
            jtop = jbot + 1
         ENDIF
         IF (jbot .EQ. ef_unspecified_int4) jtop = jbot

cbf        analogously in z direction
         kbot = ef_unspecified_int4	! Check if zpt points in yax range.
         kmatch = 0

	 zpt = arg_3(i3,j3,k3,l3)
         DO 200 k1 = arg_lo_ss(Z_AXIS,ARG1), arg_hi_ss(Z_AXIS,ARG1)
            IF (zpt .GE. zax(k1,1,1,1) ) kbot = k1
            IF (zpt .EQ. zax(k1,1,1,1) ) kmatch = k1
cbf         IF (zpt - zax(k1,1,1,1) ) .LE. eps) kmatch = k1

*  Locate the Z point within the range of modulo Z axis 

	    IF (modulo(3)) THEN
	       DO WHILE (zpt .GE. zax(zhi,1,1,1) ) 
                  zpt = zpt - delmodz
	       ENDDO
	       DO WHILE (zpt .LT. zax(zlo,1,1,1) )
		  zpt = zpt + delmodz
	       ENDDO
	    ENDIF

  200    CONTINUE
         k1 = arg_hi_ss(Z_AXIS,ARG1)
         IF (arg_3(i3,j3,k3,l3) .GE. zax(k1,1,1,1) ) THEN
            kbot = ef_unspecified_int4		! ARG_3 zpt outside of range 
						! (non modulo)

         ENDIF

c         print *, ' ypt,zpt,jbot,kbot', ypt,zpt,jbot,kbot

         IF (kmatch .NE. 0) then
            ktop = kbot
         ELSE
            ktop = kbot + 1
         ENDIF
         IF (kbot .EQ. ef_unspecified_int4) ktop = kbot

         i1 = arg_lo_ss(X_AXIS,ARG1)
         DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

            l1 = arg_lo_ss(T_AXIS,ARG1)
            l2 = arg_lo_ss(T_AXIS,ARG2)
            l3 = arg_lo_ss(T_AXIS,ARG3)
            DO 300 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

*  First interpolate in y, getting values of the fcn at (y,kbot) and (y,ktop)

	       IF (jbot .EQ. ef_unspecified_int4  .OR.  
     .		   kbot .EQ. ef_unspecified_int4) THEN
                 result(i,j,k,l) = bad_flag_result
	       ELSE 
                  IF (jbot .GE. arg_lo_ss(Y_AXIS,ARG1)  .AND.
     .                jtop .LE. arg_hi_ss(Y_AXIS,ARG1) ) THEN

                     ybot = yax(jbot,1,1,1)
                     ytop = yax(jtop,1,1,1)

                     fbb = arg_1(i1,jbot,kbot,l1)
                     fbt = arg_1(i1,jtop,kbot,l1)	!
                     ftb = arg_1(i1,jbot,ktop,l1)	!
                     ftt = arg_1(i1,jtop,ktop,l1)

                     IF (fbb .NE. bad_flag(ARG1)  .AND.
     .                   ftb .NE. bad_flag(ARG1)  .AND.
     .                   fbt .NE. bad_flag(ARG1)  .AND.
     .                   ftt .NE. bad_flag(ARG1) ) THEN

cbf                 for matching x-axis no interpolation is need
                          if (jmatch.eq.0) then
                             fbot = fbb
                             ftop = fbt
                          else
                             frac = (ypt - ybot )/ (ytop - ybot)
                             fbot = fbb + frac* (ftb - fbb)
                             ftop = fbt + frac* (ftt - fbt)
                          endif

*  Now interpolate in z, getting value at (y,z)

                       IF (kbot .GE. arg_lo_ss(Z_AXIS,ARG1)  .AND.
     .                     ktop .LE. arg_hi_ss(Z_AXIS,ARG1) ) THEN
                          zbot = zax(kbot,1,1,1)
                          ztop = zax(ktop,1,1,1)

                          if(kmatch.eq.0) then
                             result(i,j,k,l) = fbot
                          else
                            frac = (zpt - zbot)/ (ztop-zbot)

                            result(i,j,k,l) = fbot + frac* 
     .                                         (ftop - fbot)

                          endif
                       ELSE
                           result(i,j,k,l) = bad_flag_result
                       ENDIF

                    ELSE
                        result(i,j,k,l) = bad_flag_result
                    ENDIF  ! bad_flag(ARG1) test
                  ENDIF	   ! fbb,ftp, etc not bad flags

	       ENDIF  ! jtop, ktop not ef_unspecified_int4

               l1 = l1 + arg_incr(T_AXIS,ARG1)

 300        CONTINUE

            i1 = i1 + arg_incr(X_AXIS,ARG1)
 400     CONTINUE

         i2 = i2 + arg_incr(X_AXIS,ARG2)
         j2 = j2 + arg_incr(Y_AXIS,ARG2)
         k2 = k2 + arg_incr(Z_AXIS,ARG2)
         l2 = l2 + arg_incr(T_AXIS,ARG2)

         i3 = i3 + arg_incr(X_AXIS,ARG3)
         j3 = j3 + arg_incr(Y_AXIS,ARG3)
         k3 = k3 + arg_incr(Z_AXIS,ARG3)
         l3 = l3 + arg_incr(T_AXIS,ARG3)
         k = k + res_incr(Z_AXIS)
500   CONTINUE


      RETURN
 999  CALL ef_bail_out (id, err_msg)

      END