1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
# Copyright 2014 Knowledge Economy Developments Ltd
#
# Henry Gomersall
# heng@kedevelopments.co.uk
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
from pyfftw import (
FFTW, empty_aligned, is_byte_aligned, simd_alignment)
import pyfftw
from .test_pyfftw_base import run_test_suites, miss, require
import unittest
import numpy
import warnings
# FFTW tests that don't seem to fit anywhere else
class FFTWMiscTest(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(FFTWMiscTest, self).__init__(*args, **kwargs)
# Assume python 3, but keep backwards compatibility
if not hasattr(self, 'assertRaisesRegex'):
self.assertRaisesRegex = self.assertRaisesRegexp
def setUp(self):
require(self, '64')
self.input_array = empty_aligned((256, 512), dtype='complex128', n=16)
self.output_array = empty_aligned((256, 512), dtype='complex128', n=16)
self.fft = FFTW(self.input_array, self.output_array)
self.output_array[:] = (numpy.random.randn(*self.output_array.shape)
+ 1j*numpy.random.randn(*self.output_array.shape))
def test_aligned_flag(self):
'''Test to see if the aligned flag is correct
'''
fft = FFTW(self.input_array, self.output_array)
self.assertTrue(fft.simd_aligned)
fft = FFTW(self.input_array, self.output_array,
flags=('FFTW_UNALIGNED',))
self.assertFalse(fft.simd_aligned)
@unittest.skipIf(*miss('32'))
def test_flags(self):
'''Test to see if the flags are correct
'''
fft = FFTW(self.input_array, self.output_array)
self.assertEqual(fft.flags, ('FFTW_MEASURE',))
fft = FFTW(self.input_array, self.output_array,
flags=('FFTW_DESTROY_INPUT', 'FFTW_UNALIGNED'))
self.assertEqual(fft.flags, ('FFTW_DESTROY_INPUT', 'FFTW_UNALIGNED'))
# Test an implicit flag
_input_array = empty_aligned(256, dtype='complex64', n=16)
_output_array = empty_aligned(256, dtype='complex64', n=16)
# These are guaranteed to be misaligned (due to dtype size == 8)
input_array = _input_array[:-1]
output_array = _output_array[:-1]
u_input_array = _input_array[1:]
u_output_array = _output_array[1:]
fft = FFTW(input_array, u_output_array)
self.assertEqual(fft.flags, ('FFTW_MEASURE', 'FFTW_UNALIGNED'))
fft = FFTW(u_input_array, output_array)
self.assertEqual(fft.flags, ('FFTW_MEASURE', 'FFTW_UNALIGNED'))
fft = FFTW(u_input_array, u_output_array)
self.assertEqual(fft.flags, ('FFTW_MEASURE', 'FFTW_UNALIGNED'))
@unittest.skipIf(*miss('32'))
def test_differing_aligned_arrays_update(self):
'''Test to see if the alignment code is working as expected
'''
# Start by creating arrays that are only on various byte
# alignments (4, 16 and 32)
_input_array = empty_aligned(len(self.input_array.ravel())*2+5,
dtype='float32', n=32)
_output_array = empty_aligned(len(self.output_array.ravel())*2+5,
dtype='float32', n=32)
_input_array[:] = 0
_output_array[:] = 0
input_array_4 = (
numpy.frombuffer(_input_array[1:-4].data, dtype='complex64')
.reshape(self.input_array.shape))
output_array_4 = (
numpy.frombuffer(_output_array[1:-4].data, dtype='complex64')
.reshape(self.output_array.shape))
input_array_16 = (
numpy.frombuffer(_input_array[4:-1].data, dtype='complex64')
.reshape(self.input_array.shape))
output_array_16 = (
numpy.frombuffer(_output_array[4:-1].data, dtype='complex64')
.reshape(self.output_array.shape))
input_array_32 = (
numpy.frombuffer(_input_array[:-5].data, dtype='complex64')
.reshape(self.input_array.shape))
output_array_32 = (
numpy.frombuffer(_output_array[:-5].data, dtype='complex64')
.reshape(self.output_array.shape))
input_arrays = {4: input_array_4,
16: input_array_16,
32: input_array_32}
output_arrays = {4: output_array_4,
16: output_array_16,
32: output_array_32}
alignments = (4, 16, 32)
# Test the arrays are aligned on 4 bytes...
self.assertTrue(is_byte_aligned(input_arrays[4], n=4))
self.assertTrue(is_byte_aligned(output_arrays[4], n=4))
# ...and on 16...
self.assertFalse(is_byte_aligned(input_arrays[4], n=16))
self.assertFalse(is_byte_aligned(output_arrays[4], n=16))
self.assertTrue(is_byte_aligned(input_arrays[16], n=16))
self.assertTrue(is_byte_aligned(output_arrays[16], n=16))
# ...and on 32...
self.assertFalse(is_byte_aligned(input_arrays[16], n=32))
self.assertFalse(is_byte_aligned(output_arrays[16], n=32))
self.assertTrue(is_byte_aligned(input_arrays[32], n=32))
self.assertTrue(is_byte_aligned(output_arrays[32], n=32))
if len(pyfftw.pyfftw._valid_simd_alignments) > 0:
max_align = pyfftw.pyfftw._valid_simd_alignments[0]
else:
max_align = simd_alignment
for in_align in alignments:
for out_align in alignments:
expected_align = min(in_align, out_align, max_align)
fft = FFTW(input_arrays[in_align], output_arrays[out_align])
self.assertTrue(fft.input_alignment == expected_align)
self.assertTrue(fft.output_alignment == expected_align)
for update_align in alignments:
if update_align < expected_align:
# This should fail (not aligned properly)
self.assertRaisesRegex(ValueError,
'Invalid input alignment',
fft.update_arrays,
input_arrays[update_align],
output_arrays[out_align])
self.assertRaisesRegex(ValueError,
'Invalid output alignment',
fft.update_arrays,
input_arrays[in_align],
output_arrays[update_align])
else:
# This should work (and not segfault!)
fft.update_arrays(input_arrays[update_align],
output_arrays[out_align])
fft.update_arrays(input_arrays[in_align],
output_arrays[update_align])
fft.execute()
def test_get_input_array(self):
'''Test to see the get_input_array method returns the correct thing
'''
with warnings.catch_warnings(record=True) as w:
# This method is deprecated, so check the deprecation warning
# is raised.
warnings.simplefilter("always")
input_array = self.fft.get_input_array()
self.assertEqual(len(w), 1)
self.assertTrue(issubclass(w[-1].category, DeprecationWarning))
self.assertIs(self.input_array, input_array)
def test_get_output_array(self):
'''Test to see the get_output_array method returns the correct thing
'''
with warnings.catch_warnings(record=True) as w:
# This method is deprecated, so check the deprecation warning
# is raised.
warnings.simplefilter("always")
output_array = self.fft.get_output_array()
self.assertEqual(len(w), 1)
self.assertTrue(issubclass(w[-1].category, DeprecationWarning))
self.assertIs(self.output_array, output_array)
def test_input_array(self):
'''Test to see the input_array property returns the correct thing
'''
self.assertIs(self.input_array, self.fft.input_array)
def test_output_array(self):
'''Test to see the output_array property returns the correct thing
'''
self.assertIs(self.output_array, self.fft.output_array)
def test_input_strides(self):
'''Test to see if the input_strides property returns the correct thing
'''
self.assertEqual(self.fft.input_strides, self.input_array.strides)
new_input_array = self.input_array[::2, ::4]
new_output_array = self.output_array[::2, ::4]
new_fft = FFTW(new_input_array, new_output_array)
self.assertEqual(new_fft.input_strides, new_input_array.strides)
def test_output_strides(self):
'''Test to see if the output_strides property returns the correct thing
'''
self.assertEqual(self.fft.output_strides, self.output_array.strides)
new_input_array = self.output_array[::2, ::4]
new_output_array = self.output_array[::2, ::4]
new_fft = FFTW(new_input_array, new_output_array)
self.assertEqual(new_fft.output_strides, new_output_array.strides)
def test_input_shape(self):
'''Test to see if the input_shape property returns the correct thing
'''
self.assertEqual(self.fft.input_shape, self.input_array.shape)
new_input_array = self.input_array[::2, ::4]
new_output_array = self.output_array[::2, ::4]
new_fft = FFTW(new_input_array, new_output_array)
self.assertEqual(new_fft.input_shape, new_input_array.shape)
def test_output_strides(self):
'''Test to see if the output_shape property returns the correct thing
'''
self.assertEqual(self.fft.output_shape, self.output_array.shape)
new_input_array = self.output_array[::2, ::4]
new_output_array = self.output_array[::2, ::4]
new_fft = FFTW(new_input_array, new_output_array)
self.assertEqual(new_fft.output_shape, new_output_array.shape)
@unittest.skipIf(*miss('32'))
def test_input_dtype(self):
'''Test to see if the input_dtype property returns the correct thing
'''
self.assertEqual(self.fft.input_dtype, self.input_array.dtype)
new_input_array = numpy.complex64(self.input_array)
new_output_array = numpy.complex64(self.output_array)
new_fft = FFTW(new_input_array, new_output_array)
self.assertEqual(new_fft.input_dtype, new_input_array.dtype)
@unittest.skipIf(*miss('32'))
def test_output_dtype(self):
'''Test to see if the output_dtype property returns the correct thing
'''
self.assertEqual(self.fft.output_dtype, self.output_array.dtype)
new_input_array = numpy.complex64(self.input_array)
new_output_array = numpy.complex64(self.output_array)
new_fft = FFTW(new_input_array, new_output_array)
self.assertEqual(new_fft.output_dtype, new_output_array.dtype)
def test_direction_property(self):
'''Test to see if the direction property returns the correct thing
'''
self.assertEqual(self.fft.direction, 'FFTW_FORWARD')
new_fft = FFTW(self.input_array, self.output_array,
direction='FFTW_BACKWARD')
self.assertEqual(new_fft.direction, 'FFTW_BACKWARD')
def test_axes_property(self):
'''Test to see if the axes property returns the correct thing
'''
self.assertEqual(self.fft.axes, (1,))
new_fft = FFTW(self.input_array, self.output_array, axes=(-1, -2))
self.assertEqual(new_fft.axes, (1, 0))
new_fft = FFTW(self.input_array, self.output_array, axes=(-2, -1))
self.assertEqual(new_fft.axes, (0, 1))
new_fft = FFTW(self.input_array, self.output_array, axes=(1, 0))
self.assertEqual(new_fft.axes, (1, 0))
new_fft = FFTW(self.input_array, self.output_array, axes=(1,))
self.assertEqual(new_fft.axes, (1,))
new_fft = FFTW(self.input_array, self.output_array, axes=(0,))
self.assertEqual(new_fft.axes, (0,))
def test_ortho_property(self):
'''ortho property defaults to False
'''
self.assertEqual(self.fft.ortho, False)
newfft = FFTW(self.input_array, self.output_array, ortho=True,
normalise_idft=False)
self.assertEqual(newfft.ortho, True)
def test_normalise_idft_property(self):
'''normalise_idft property defaults to True
'''
self.assertEqual(self.fft.normalise_idft, True)
newfft = FFTW(self.input_array, self.output_array,
normalise_idft=False)
self.assertEqual(newfft.normalise_idft, False)
def test_invalid_normalisation(self):
# both ortho and normalise_idft cannot be True
self.assertRaisesRegex(
ValueError, 'Invalid options: ortho',
FFTW, self.input_array, self.output_array,
direction='FFTW_BACKWARD', ortho=True, normalise_idft=True)
test_cases = (
FFTWMiscTest,)
test_set = None
if __name__ == '__main__':
run_test_suites(test_cases, test_set)
|