1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
# Copyright 2014 Knowledge Economy Developments Ltd
#
# Henry Gomersall
# heng@kedevelopments.co.uk
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
from pyfftw import FFTW, forget_wisdom
import numpy
from timeit import Timer
import time
from .test_pyfftw_base import run_test_suites, miss, require, np_fft
import unittest
from .test_pyfftw_complex import Complex64FFTWTest
class RealBackwardDoubleFFTWTest(Complex64FFTWTest):
def setUp(self):
require(self, '64')
self.input_dtype = numpy.complex128
self.output_dtype = numpy.float64
self.np_fft_comparison = np_fft.irfft
self.direction = 'FFTW_BACKWARD'
def make_shapes(self):
self.input_shapes = {
'small_1d': (9,),
'1d': (1025,),
'2d': (256, 1025),
'3d': (5, 256, 1025)}
self.output_shapes = {
'small_1d': (16,),
'1d': (2048,),
'2d': (256, 2048),
'3d': (5, 256, 2048)}
def test_invalid_args_raise(self):
in_shape = self.input_shapes['1d']
out_shape = self.output_shapes['1d']
axes=(-1,)
a, b = self.create_test_arrays(in_shape, out_shape)
# Note "thread" is incorrect, it should be "threads"
self.assertRaises(TypeError, FFTW, a, b, axes,
direction='FFTW_BACKWARD', thread=4)
def create_test_arrays(self, input_shape, output_shape, axes=None):
a = self.input_dtype(numpy.random.randn(*input_shape)
+1j*numpy.random.randn(*input_shape))
b = self.output_dtype(numpy.random.randn(*output_shape))
# We fill a by doing the forward FFT from b.
# This means that the relevant bits that should be purely
# real will be (for example the zero freq component).
# This is easier than writing a complicate system to work it out.
try:
if axes == None:
fft = FFTW(b,a,direction='FFTW_FORWARD')
else:
fft = FFTW(b,a,direction='FFTW_FORWARD', axes=axes)
b[:] = self.output_dtype(numpy.random.randn(*output_shape))
fft.execute()
scaling = numpy.prod(numpy.array(a.shape))
a = self.input_dtype(a/scaling)
except ValueError:
# In this case, we assume that it was meant to error,
# so we can return what we want.
pass
b = self.output_dtype(numpy.random.randn(*output_shape))
return a, b
def run_validate_fft(self, a, b, axes, fft=None, ifft=None,
force_unaligned_data=False, create_array_copies=True,
threads=1, flags=('FFTW_ESTIMATE',)):
''' *** EVERYTHING IS FLIPPED AROUND BECAUSE WE ARE
VALIDATING AN INVERSE FFT ***
Run a validation of the FFTW routines for the passed pair
of arrays, a and b, and the axes argument.
a and b are assumed to be the same shape (but not necessarily
the same layout in memory).
fft and ifft, if passed, should be instantiated FFTW objects.
If force_unaligned_data is True, the flag FFTW_UNALIGNED
will be passed to the fftw routines.
'''
if create_array_copies:
# Don't corrupt the original mutable arrays
a = a.copy()
b = b.copy()
a_orig = a.copy()
flags = list(flags)
if force_unaligned_data:
flags.append('FFTW_UNALIGNED')
if ifft == None:
ifft = FFTW(a, b, axes=axes, direction='FFTW_BACKWARD',
flags=flags, threads=threads)
else:
ifft.update_arrays(a,b)
if fft == None:
fft = FFTW(b, a, axes=axes, direction='FFTW_FORWARD',
flags=flags, threads=threads)
else:
fft.update_arrays(b,a)
a[:] = a_orig
# Test the inverse FFT by comparing it to the result from numpy.fft
ifft.execute()
a[:] = a_orig
ref_b = self.reference_fftn(a, axes=axes)
# The scaling is the product of the lengths of the fft along
# the axes along which the fft is taken.
scaling = numpy.prod(numpy.array(b.shape)[list(axes)])
self.assertEqual(ifft.N, scaling)
self.assertEqual(fft.N, scaling)
# This is actually quite a poor relative error, but it still
# sometimes fails. I assume that numpy.fft has different internals
# to fftw.
self.assertTrue(numpy.allclose(b/scaling, ref_b, rtol=1e-2, atol=1e-3))
# Test the FFT by comparing the result to the starting
# value (which is scaled as per FFTW being unnormalised).
fft.execute()
self.assertTrue(numpy.allclose(a/scaling, a_orig, rtol=1e-2, atol=1e-3))
return fft, ifft
def test_time_with_array_update(self):
in_shape = self.input_shapes['2d']
out_shape = self.output_shapes['2d']
axes=(-1,)
a, b = self.create_test_arrays(in_shape, out_shape)
fft, ifft = self.run_validate_fft(a, b, axes)
def fftw_callable():
fft.update_arrays(b,a)
fft.execute()
self.timer_routine(fftw_callable,
lambda: self.np_fft_comparison(a))
self.assertTrue(True)
def reference_fftn(self, a, axes):
# This needs to be an inverse
return np_fft.irfftn(a, axes=axes)
def test_wrong_direction_fail(self):
in_shape = self.input_shapes['2d']
out_shape = self.output_shapes['2d']
axes=(-1,)
a, b = self.create_test_arrays(in_shape, out_shape)
with self.assertRaisesRegex(ValueError, 'Invalid direction'):
FFTW(a, b, direction='FFTW_FORWARD')
def test_planning_time_limit(self):
in_shape = self.input_shapes['1d']
out_shape = self.output_shapes['1d']
axes=(0,)
a, b = self.create_test_arrays(in_shape, out_shape)
# run this a few times
runs = 10
t1 = time.time()
for n in range(runs):
forget_wisdom()
fft = FFTW(b, a, axes=axes)
unlimited_time = (time.time() - t1)/runs
time_limit = (unlimited_time)/8
# Now do it again but with an upper limit on the time
t1 = time.time()
for n in range(runs):
forget_wisdom()
fft = FFTW(b, a, axes=axes, planning_timelimit=time_limit)
limited_time = (time.time() - t1)/runs
import sys
if sys.platform == 'win32':
# Give a 4x margin on windows. The timers are low
# precision and FFTW seems to take longer anyway
self.assertTrue(limited_time < time_limit*4)
else:
# Otherwise have a 2x margin
self.assertTrue(limited_time < time_limit*2)
def test_invalid_planning_time_limit(self):
in_shape = self.input_shapes['1d']
out_shape = self.output_shapes['1d']
axes=(0,)
a, b = self.create_test_arrays(in_shape, out_shape)
self.assertRaisesRegex(TypeError, 'Invalid planning timelimit',
FFTW, *(b, a, axes), **{'planning_timelimit': 'foo'})
def test_default_args(self):
in_shape = self.input_shapes['2d']
out_shape = self.output_shapes['2d']
a, b = self.create_test_arrays(in_shape, out_shape)
# default args should fail for backwards transforms
# (as the default is FFTW_FORWARD)
with self.assertRaisesRegex(ValueError, 'Invalid direction'):
FFTW(a, b)
def test_non_contiguous_2d(self):
in_shape = self.input_shapes['2d']
out_shape = self.output_shapes['2d']
axes=(-2,-1)
a, b = self.create_test_arrays(in_shape, out_shape)
# Some arbitrary and crazy slicing
a_sliced = a[20:146:2, 100:786:7]
# b needs to be compatible
b_sliced = b[12:200:3, 300:2041:9]
self.run_validate_fft(a_sliced, b_sliced, axes, create_array_copies=False)
def test_non_contiguous_2d_in_3d(self):
in_shape = (256, 4, 1025)
out_shape = (256, 4, 2048)
axes=(0,2)
a, b = self.create_test_arrays(in_shape, out_shape)
# Some arbitrary and crazy slicing
a_sliced = a[20:146:2, :, 100:786:7]
# b needs to be compatible
b_sliced = b[12:200:3, :, 300:2041:9]
# The data doesn't work, so we need to generate it for the
# correct size
a_, b_ = self.create_test_arrays(a_sliced.shape, b_sliced.shape, axes=axes)
# And then copy it into the non contiguous array
a_sliced[:] = a_
b_sliced[:] = b_
self.run_validate_fft(a_sliced, b_sliced, axes, create_array_copies=False)
def test_non_monotonic_increasing_axes(self):
super(RealBackwardDoubleFFTWTest,
self).test_non_monotonic_increasing_axes()
@unittest.skipIf(*miss('32'))
class RealBackwardSingleFFTWTest(RealBackwardDoubleFFTWTest):
def setUp(self):
self.input_dtype = numpy.complex64
self.output_dtype = numpy.float32
self.np_fft_comparison = np_fft.irfft
self.direction = 'FFTW_BACKWARD'
@unittest.skipIf(*miss('ld'))
class RealBackwardLongDoubleFFTWTest(RealBackwardDoubleFFTWTest):
def setUp(self):
self.input_dtype = numpy.clongdouble
self.output_dtype = numpy.longdouble
self.np_fft_comparison = np_fft.irfft
self.direction = 'FFTW_BACKWARD'
def reference_fftn(self, a, axes):
a = numpy.complex128(a)
return np_fft.irfftn(a, axes=axes)
@unittest.skip('numpy.fft has issues with this dtype.')
def test_time(self):
pass
@unittest.skip('numpy.fft has issues with this dtype.')
def test_time_with_array_update(self):
pass
test_cases = (
RealBackwardDoubleFFTWTest,
RealBackwardSingleFFTWTest,
RealBackwardLongDoubleFFTWTest,)
test_set = None
if __name__ == '__main__':
run_test_suites(test_cases, test_set)
del Complex64FFTWTest
|