File: polygon2d.hpp

package info (click to toggle)
pygalmesh 0.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,152 kB
  • sloc: cpp: 2,254; python: 1,607; makefile: 44
file content (308 lines) | stat: -rw-r--r-- 8,383 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#ifndef POLYGON2D_HPP
#define POLYGON2D_HPP

#include "domain.hpp"

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <array>
#include <memory>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

namespace pygalmesh {

class Polygon2D {
  public:
  explicit Polygon2D(const std::vector<std::array<double, 2>> & _points):
    points(vector_to_cgal_points(_points))
  {
  }

  virtual ~Polygon2D() = default;

  std::vector<K::Point_2>
  vector_to_cgal_points(const std::vector<std::array<double, 2>> & _points) const
  {
    std::vector<K::Point_2> points2(_points.size());
    for (size_t i = 0; i < _points.size(); i++) {
      assert(_points[i].size() == 2);
      points2[i] = K::Point_2(_points[i][0], _points[i][1]);
    }
    return points2;
  }

  bool
  is_inside(const std::array<double, 2> & point)
  {
    K::Point_2 pt(point[0], point[1]);
    switch(CGAL::bounded_side_2(this->points.begin(), this->points.end(), pt, K())) {
      case CGAL::ON_BOUNDED_SIDE:
        return true;
      case CGAL::ON_BOUNDARY:
        return true;
      case CGAL::ON_UNBOUNDED_SIDE:
        return false;
      default:
        return false;
    }
    return false;
  }

  public:
  const std::vector<K::Point_2> points;
};


class Extrude: public pygalmesh::DomainBase {
  public:
  Extrude(
      const std::shared_ptr<pygalmesh::Polygon2D> & poly,
      const std::array<double, 3> & direction,
      const double alpha = 0.0,
      const double max_edge_size_at_feature_edges = 0.0
      ):
    poly_(poly),
    direction_(direction),
    alpha_(alpha),
    max_edge_size_at_feature_edges_(max_edge_size_at_feature_edges)
  {
  }

  virtual ~Extrude() = default;

  virtual
  double
  eval(const std::array<double, 3> & x) const
  {
    if (x[2] < 0.0 || x[2] > direction_[2]) {
      return 1.0;
    }

    const double beta = x[2] / direction_[2];

    std::array<double, 2> x2 = {
      x[0] - beta * direction_[0],
      x[1] - beta * direction_[1]
    };

    if (alpha_ != 0.0) {
      std::array<double, 2> x3;
      // turn by -beta*alpha
      const double sinAlpha = sin(beta*alpha_);
      const double cosAlpha = cos(beta*alpha_);
      x3[0] =  cosAlpha * x2[0] + sinAlpha * x2[1];
      x3[1] = -sinAlpha * x2[0] + cosAlpha * x2[1];
      x2 = x3;
    }

    return poly_->is_inside(x2) ? -1.0 : 1.0;
  }

  virtual
  double
  get_bounding_sphere_squared_radius() const
  {
    double max = 0.0;
    for (const auto & pt: poly_->points) {
      // bottom polygon
      const double nrm0 = pt.x()*pt.x() + pt.y()*pt.y();
      if (nrm0 > max) {
        max = nrm0;
      }

      // TODO rotation

      // top polygon
      const double x = pt.x() + direction_[0];
      const double y = pt.y() + direction_[1];
      const double z = direction_[2];
      const double nrm1 = x*x + y*y + z*z;
      if (nrm1 > max) {
        max = nrm1;
      }
    }
    return max;
  }

  virtual
  std::vector<std::vector<std::array<double, 3>>>
  get_features() const
  {
    std::vector<std::vector<std::array<double, 3>>> features = {};

    size_t n;

    // bottom polygon
    n = poly_->points.size();
    for (size_t i=0; i < n-1; i++) {
      features.push_back({
        {poly_->points[i].x(), poly_->points[i].y(), 0.0},
        {poly_->points[i+1].x(), poly_->points[i+1].y(), 0.0}
      });
    }
    features.push_back({
      {poly_->points[n-1].x(), poly_->points[n-1].y(), 0.0},
      {poly_->points[0].x(), poly_->points[0].y(), 0.0}
    });

    // top polygon, R*x + d
    n = poly_->points.size();
    const double sinAlpha = sin(alpha_);
    const double cosAlpha = cos(alpha_);
    for (size_t i=0; i < n-1; i++) {
      features.push_back({
        {
        cosAlpha * poly_->points[i].x() - sinAlpha * poly_->points[i].y() + direction_[0],
        sinAlpha * poly_->points[i].x() + cosAlpha * poly_->points[i].y() + direction_[1],
        direction_[2]
        },
        {
        cosAlpha * poly_->points[i+1].x() - sinAlpha * poly_->points[i+1].y() + direction_[0],
        sinAlpha * poly_->points[i+1].x() + cosAlpha * poly_->points[i+1].y() + direction_[1],
        direction_[2]
        }
      });
    }
    features.push_back({
      {
      cosAlpha * poly_->points[n-1].x() - sinAlpha * poly_->points[n-1].y() + direction_[0],
      sinAlpha * poly_->points[n-1].x() + cosAlpha * poly_->points[n-1].y() + direction_[1],
      direction_[2]
      },
      {
      cosAlpha * poly_->points[0].x() - sinAlpha * poly_->points[0].y() + direction_[0],
      sinAlpha * poly_->points[0].x() + cosAlpha * poly_->points[0].y() + direction_[1],
      direction_[2]
      }
    });

    // features connecting the top and bottom
    if (alpha_ == 0) {
      for (const auto & pt: poly_->points) {
        std::vector<std::array<double, 3>> line = {
          {pt.x(), pt.y(), 0.0},
          {pt.x() + direction_[0], pt.y() + direction_[1], direction_[2]}
        };
        features.push_back(line);
      }
    } else {
      // Alright, we need to chop the lines on which the polygon corners are
      // sitting into pieces. How long? About max_edge_size_at_feature_edges. For the starting point
      // (x0, y0, z0) height h and angle alpha, the lines are given by
      //
      // f(beta) = (
      //   cos(alpha*beta) x0 - sin(alpha*beta) y0,
      //   sin(alpha*beta) x0 + cos(alpha*beta) y0,
      //   z0 + beta * h
      //   )
      //
      // with beta in [0, 1]. The length from beta0 till beta1 is then
      //
      //  l = sqrt(alpha^2 (x0^2 + y0^2) + h^2) * (beta1 - beta0).
      //
      const double height = direction_[2];
      for (const auto & pt: poly_->points) {
        const double l = sqrt(alpha_*alpha_ * (pt.x()*pt.x() + pt.y()*pt.y()) + height*height);
        assert(max_edge_size_at_feature_edges_ > 0.0);
        const size_t n = int(l / max_edge_size_at_feature_edges_ - 0.5) + 1;
        std::vector<std::array<double, 3>> line = {
          {pt.x(), pt.y(), 0.0},
        };
        for (size_t i=0; i < n; i++) {
          const double beta = double(i+1) / n;
          const double sinAB = sin(alpha_*beta);
          const double cosAB = cos(alpha_*beta);
          line.push_back({
              cosAB * pt.x() - sinAB * pt.y(),
              sinAB * pt.x() + cosAB * pt.y(),
              beta * height
              });
        }
        features.push_back(line);
      }
    }

    return features;
  };

  private:
  const std::shared_ptr<pygalmesh::Polygon2D> poly_;
  const std::array<double, 3> direction_;
  const double alpha_;
  const double max_edge_size_at_feature_edges_;
};


class ring_extrude: public pygalmesh::DomainBase {
  public:
  ring_extrude(
      const std::shared_ptr<pygalmesh::Polygon2D> & poly,
      const double max_edge_size_at_feature_edges
      ):
    poly_(poly),
    max_edge_size_at_feature_edges_(max_edge_size_at_feature_edges)
  {
    assert(max_edge_size_at_feature_edges > 0.0);
  }

  virtual ~ring_extrude() = default;

  virtual
  double
  eval(const std::array<double, 3> & x) const
  {
    const double r = sqrt(x[0]*x[0] + x[1]*x[1]);
    const double z = x[2];

    return poly_->is_inside({r, z}) ? -1.0 : 1.0;
  }

  virtual
  double
  get_bounding_sphere_squared_radius() const
  {
    double max = 0.0;
    for (const auto & pt: poly_->points) {
      const double nrm1 = pt.x()*pt.x() + pt.y()*pt.y();
      if (nrm1 > max) {
        max = nrm1;
      }
    }
    return max;
  }

  virtual
  std::vector<std::vector<std::array<double, 3>>>
  get_features() const
  {
    std::vector<std::vector<std::array<double, 3>>> features = {};

    for (const auto & pt: poly_->points) {
      const double r = pt.x();
      const double circ = 2 * 3.14159265359 * r;
      const size_t n = int(circ / max_edge_size_at_feature_edges_ - 0.5) + 1;
      std::vector<std::array<double, 3>> line;
      for (size_t i=0; i < n; i++) {
        const double alpha = (2 * 3.14159265359 * i) / n;
        line.push_back({
          r * cos(alpha),
          r * sin(alpha),
          pt.y()
        });
      }
      line.push_back(line.front());
      features.push_back(line);
    }
    return features;
  }

  private:
  const std::shared_ptr<pygalmesh::Polygon2D> poly_;
  const double max_edge_size_at_feature_edges_;
};

} // namespace pygalmesh

#endif // POLYGON2D_HPP