1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
.. include:: common.txt
:mod:`pygame.math`
==================
.. module:: pygame.math
:synopsis: pygame module for vector classes
| :sl:`pygame module for vector classes`
The pygame math module currently provides Vector classes in two and three
dimensions, Vector2 and Vector3 respectively.
They support the following numerical operations: vec+vec, vec-vec, vec*number,
number*vec, vec/number, vec//number, vec+=vec, vec-=vec, vec*=number,
vec/=number, vec//=number. All these operations will be performed elementwise.
In addition vec*vec will perform a scalar-product (a.k.a. dot-product). If you
want to multiply every element from vector v with every element from vector w
you can use the elementwise method: ``v.elementwise()`` ``\*`` w
New in pygame 1.9.2pre.
1.9.4 removed experimental notice.
1.9.4 changed constructors to require 2, or 3 elements rather than assigning 0 default.
1.9.4 allowed scalar construction like GLSL Vector2(2) == Vector2(2.0, 2.0)
1.9.4 pygame.math required import. more convienient pygame.Vector2 and pygame.Vector3.
.. class:: Vector2
| :sl:`a 2-Dimensional Vector`
| :sg:`Vector2() -> Vector2`
| :sg:`Vector2(int) -> Vector2`
| :sg:`Vector2(float) -> Vector2`
| :sg:`Vector2(Vector2) -> Vector2`
| :sg:`Vector2(x, y) -> Vector2`
| :sg:`Vector2((x, y)) -> Vector2`
Some general information about the Vector2 class.
.. method:: dot
| :sl:`calculates the dot- or scalar-product with the other vector`
| :sg:`dot(Vector2) -> float`
.. ## Vector2.dot ##
.. method:: cross
| :sl:`calculates the cross- or vector-product`
| :sg:`cross(Vector2) -> float`
calculates the third component of the cross-product.
.. ## Vector2.cross ##
.. method:: magnitude
| :sl:`returns the Euclidean magnitude of the vector.`
| :sg:`magnitude() -> float`
calculates the magnitude of the vector which follows from the
theorem: ``vec.magnitude()`` == ``math.sqrt(vec.x**2 + vec.y**2)``
.. ## Vector2.magnitude ##
.. method:: magnitude_squared
| :sl:`returns the squared magnitude of the vector.`
| :sg:`magnitude_squared() -> float`
calculates the magnitude of the vector which follows from the
theorem: ``vec.magnitude_squared()`` == vec.x**2 + vec.y**2 This
is faster than ``vec.magnitude()`` because it avoids the square root.
.. ## Vector2.magnitude_squared ##
.. method:: length
| :sl:`returns the Euclidean length of the vector.`
| :sg:`length() -> float`
calculates the Euclidean length of the vector which follows from the
Pythagorean theorem: ``vec.length()`` ==
``math.sqrt(vec.x**2 + vec.y**2)``
.. ## Vector2.length ##
.. method:: length_squared
| :sl:`returns the squared Euclidean length of the vector.`
| :sg:`length_squared() -> float`
calculates the Euclidean length of the vector which follows from the
Pythagorean theorem: ``vec.length_squared()`` == vec.x**2 + vec.y**2 This
is faster than ``vec.length()`` because it avoids the square root.
.. ## Vector2.length_squared ##
.. method:: normalize
| :sl:`returns a vector with the same direction but length 1.`
| :sg:`normalize() -> Vector2`
Returns a new vector that has length == 1 and the same direction as self.
.. ## Vector2.normalize ##
.. method:: normalize_ip
| :sl:`normalizes the vector in place so that its length is 1.`
| :sg:`normalize_ip() -> None`
Normalizes the vector so that it has length == 1. The direction of the
vector is not changed.
.. ## Vector2.normalize_ip ##
.. method:: is_normalized
| :sl:`tests if the vector is normalized i.e. has length == 1.`
| :sg:`is_normalized() -> Bool`
Returns True if the vector has length == 1. Otherwise it returns False.
.. ## Vector2.is_normalized ##
.. method:: scale_to_length
| :sl:`scales the vector to a given length.`
| :sg:`scale_to_length(float) -> None`
Scales the vector so that it has the given length. The direction of the
vector is not changed. You can also scale to length 0. If the vector is
the zero vector (i.e. has length 0 thus no direction) an
ZeroDivisionError is raised.
.. ## Vector2.scale_to_length ##
.. method:: reflect
| :sl:`returns a vector reflected of a given normal.`
| :sg:`reflect(Vector2) -> Vector2`
Returns a new vector that points in the direction as if self would bounce
of a surface characterized by the given surface normal. The length of the
new vector is the same as self's.
.. ## Vector2.reflect ##
.. method:: reflect_ip
| :sl:`reflect the vector of a given normal in place.`
| :sg:`reflect_ip(Vector2) -> None`
Changes the direction of self as if it would have been reflected of a
surface with the given surface normal.
.. ## Vector2.reflect_ip ##
.. method:: distance_to
| :sl:`calculates the Euclidean distance to a given vector.`
| :sg:`distance_to(Vector2) -> float`
.. ## Vector2.distance_to ##
.. method:: distance_squared_to
| :sl:`calculates the squared Euclidean distance to a given vector.`
| :sg:`distance_squared_to(Vector2) -> float`
.. ## Vector2.distance_squared_to ##
.. method:: lerp
| :sl:`returns a linear interpolation to the given vector.`
| :sg:`lerp(Vector2, float) -> Vector2`
Returns a Vector which is a linear interpolation between self and the
given Vector. The second parameter determines how far between self an
other the result is going to be. It must be a value between 0 and 1 where
0 means self an 1 means other will be returned.
.. ## Vector2.lerp ##
.. method:: slerp
| :sl:`returns a spherical interpolation to the given vector.`
| :sg:`slerp(Vector2, float) -> Vector2`
Calculates the spherical interpolation from self to the given Vector. The
second argument - often called t - must be in the range [-1, 1]. It
parametrizes where - in between the two vectors - the result should be.
If a negative value is given the interpolation will not take the
complement of the shortest path.
.. ## Vector2.slerp ##
.. method:: elementwise
| :sl:`The next operation will be performed elementwise.`
| :sg:`elementwise() -> VectorElementwiseProxy`
Applies the following operation to each element of the vector.
.. ## Vector2.elementwise ##
.. method:: rotate
| :sl:`rotates a vector by a given angle in degrees.`
| :sg:`rotate(float) -> Vector2`
Returns a vector which has the same length as self but is rotated
counterclockwise by the given angle in degrees.
.. ## Vector2.rotate ##
.. method:: rotate_ip
| :sl:`rotates the vector by a given angle in degrees in place.`
| :sg:`rotate_ip(float) -> None`
Rotates the vector counterclockwise by the given angle in degrees. The
length of the vector is not changed.
.. ## Vector2.rotate_ip ##
.. method:: angle_to
| :sl:`calculates the angle to a given vector in degrees.`
| :sg:`angle_to(Vector2) -> float`
Returns the angle between self and the given vector.
.. ## Vector2.angle_to ##
.. method:: as_polar
| :sl:`returns a tuple with radial distance and azimuthal angle.`
| :sg:`as_polar() -> (r, phi)`
Returns a tuple (r, phi) where r is the radial distance, and phi is the
azimuthal angle.
.. ## Vector2.as_polar ##
.. method:: from_polar
| :sl:`Sets x and y from a polar coordinates tuple.`
| :sg:`from_polar((r, phi)) -> None`
Sets x and y from a tuple (r, phi) where r is the radial distance, and
phi is the azimuthal angle.
.. ## Vector2.from_polar ##
.. ## pygame.math.Vector2 ##
.. class:: Vector3
| :sl:`a 3-Dimensional Vector`
| :sg:`Vector3() -> Vector3`
| :sg:`Vector3(int) -> Vector2`
| :sg:`Vector3(float) -> Vector2`
| :sg:`Vector3(Vector3) -> Vector3`
| :sg:`Vector3(x, y, z) -> Vector3`
| :sg:`Vector3((x, y, z)) -> Vector3`
Some general information about the Vector3 class.
.. method:: dot
| :sl:`calculates the dot- or scalar-product with the other vector`
| :sg:`dot(Vector3) -> float`
.. ## Vector3.dot ##
.. method:: cross
| :sl:`calculates the cross- or vector-product`
| :sg:`cross(Vector3) -> float`
calculates the cross-product.
.. ## Vector3.cross ##
.. method:: magnitude
| :sl:`returns the Euclidean magnitude of the vector.`
| :sg:`magnitude() -> float`
calculates the magnitude of the vector which follows from the
theorem: ``vec.magnitude()`` == ``math.sqrt(vec.x**2 + vec.y**2 + vec.z**2)``
.. ## Vector3.magnitude ##
.. method:: magnitude_squared
| :sl:`returns the squared Euclidean magnitude of the vector.`
| :sg:`magnitude_squared() -> float`
calculates the magnitude of the vector which follows from the
theorem: ``vec.magnitude_squared()`` == vec.x**2 + vec.y**2 +
vec.z**2 This is faster than ``vec.magnitude()`` because it avoids the
square root.
.. ## Vector3.magnitude_squared ##
.. method:: length
| :sl:`returns the Euclidean length of the vector.`
| :sg:`length() -> float`
calculates the Euclidean length of the vector which follows from the
Pythagorean theorem: ``vec.length()`` ==
``math.sqrt(vec.x**2 + vec.y**2 + vec.z**2)``
.. ## Vector3.length ##
.. method:: length_squared
| :sl:`returns the squared Euclidean length of the vector.`
| :sg:`length_squared() -> float`
calculates the Euclidean length of the vector which follows from the
Pythagorean theorem: ``vec.length_squared()`` == vec.x**2 + vec.y**2 +
vec.z**2 This is faster than ``vec.length()`` because it avoids the
square root.
.. ## Vector3.length_squared ##
.. method:: normalize
| :sl:`returns a vector with the same direction but length 1.`
| :sg:`normalize() -> Vector3`
Returns a new vector that has length == 1 and the same direction as self.
.. ## Vector3.normalize ##
.. method:: normalize_ip
| :sl:`normalizes the vector in place so that its length is 1.`
| :sg:`normalize_ip() -> None`
Normalizes the vector so that it has length == 1. The direction of the
vector is not changed.
.. ## Vector3.normalize_ip ##
.. method:: is_normalized
| :sl:`tests if the vector is normalized i.e. has length == 1.`
| :sg:`is_normalized() -> Bool`
Returns True if the vector has length == 1. Otherwise it returns False.
.. ## Vector3.is_normalized ##
.. method:: scale_to_length
| :sl:`scales the vector to a given length.`
| :sg:`scale_to_length(float) -> None`
Scales the vector so that it has the given length. The direction of the
vector is not changed. You can also scale to length 0. If the vector is
the zero vector (i.e. has length 0 thus no direction) an
ZeroDivisionError is raised.
.. ## Vector3.scale_to_length ##
.. method:: reflect
| :sl:`returns a vector reflected of a given normal.`
| :sg:`reflect(Vector3) -> Vector3`
Returns a new vector that points in the direction as if self would bounce
of a surface characterized by the given surface normal. The length of the
new vector is the same as self's.
.. ## Vector3.reflect ##
.. method:: reflect_ip
| :sl:`reflect the vector of a given normal in place.`
| :sg:`reflect_ip(Vector3) -> None`
Changes the direction of self as if it would have been reflected of a
surface with the given surface normal.
.. ## Vector3.reflect_ip ##
.. method:: distance_to
| :sl:`calculates the Euclidean distance to a given vector.`
| :sg:`distance_to(Vector3) -> float`
.. ## Vector3.distance_to ##
.. method:: distance_squared_to
| :sl:`calculates the squared Euclidean distance to a given vector.`
| :sg:`distance_squared_to(Vector3) -> float`
.. ## Vector3.distance_squared_to ##
.. method:: lerp
| :sl:`returns a linear interpolation to the given vector.`
| :sg:`lerp(Vector3, float) -> Vector3`
Returns a Vector which is a linear interpolation between self and the
given Vector. The second parameter determines how far between self an
other the result is going to be. It must be a value between 0 and 1 where
0 means self an 1 means other will be returned.
.. ## Vector3.lerp ##
.. method:: slerp
| :sl:`returns a spherical interpolation to the given vector.`
| :sg:`slerp(Vector3, float) -> Vector3`
Calculates the spherical interpolation from self to the given Vector. The
second argument - often called t - must be in the range [-1, 1]. It
parametrizes where - in between the two vectors - the result should be.
If a negative value is given the interpolation will not take the
complement of the shortest path.
.. ## Vector3.slerp ##
.. method:: elementwise
| :sl:`The next operation will be performed elementwise.`
| :sg:`elementwise() -> VectorElementwiseProxy`
Applies the following operation to each element of the vector.
.. ## Vector3.elementwise ##
.. method:: rotate
| :sl:`rotates a vector by a given angle in degrees.`
| :sg:`rotate(Vector3, float) -> Vector3`
Returns a vector which has the same length as self but is rotated
counterclockwise by the given angle in degrees around the given axis.
.. ## Vector3.rotate ##
.. method:: rotate_ip
| :sl:`rotates the vector by a given angle in degrees in place.`
| :sg:`rotate_ip(Vector3, float) -> None`
Rotates the vector counterclockwise around the given axis by the given
angle in degrees. The length of the vector is not changed.
.. ## Vector3.rotate_ip ##
.. method:: rotate_x
| :sl:`rotates a vector around the x-axis by the angle in degrees.`
| :sg:`rotate_x(float) -> Vector3`
Returns a vector which has the same length as self but is rotated
counterclockwise around the x-axis by the given angle in degrees.
.. ## Vector3.rotate_x ##
.. method:: rotate_x_ip
| :sl:`rotates the vector around the x-axis by the angle in degrees in place.`
| :sg:`rotate_x_ip(float) -> None`
Rotates the vector counterclockwise around the x-axis by the given angle
in degrees. The length of the vector is not changed.
.. ## Vector3.rotate_x_ip ##
.. method:: rotate_y
| :sl:`rotates a vector around the y-axis by the angle in degrees.`
| :sg:`rotate_y(float) -> Vector3`
Returns a vector which has the same length as self but is rotated
counterclockwise around the y-axis by the given angle in degrees.
.. ## Vector3.rotate_y ##
.. method:: rotate_y_ip
| :sl:`rotates the vector around the y-axis by the angle in degrees in place.`
| :sg:`rotate_y_ip(float) -> None`
Rotates the vector counterclockwise around the y-axis by the given angle
in degrees. The length of the vector is not changed.
.. ## Vector3.rotate_y_ip ##
.. method:: rotate_z
| :sl:`rotates a vector around the z-axis by the angle in degrees.`
| :sg:`rotate_z(float) -> Vector3`
Returns a vector which has the same length as self but is rotated
counterclockwise around the z-axis by the given angle in degrees.
.. ## Vector3.rotate_z ##
.. method:: rotate_z_ip
| :sl:`rotates the vector around the z-axis by the angle in degrees in place.`
| :sg:`rotate_z_ip(float) -> None`
Rotates the vector counterclockwise around the z-axis by the given angle
in degrees. The length of the vector is not changed.
.. ## Vector3.rotate_z_ip ##
.. method:: angle_to
| :sl:`calculates the angle to a given vector in degrees.`
| :sg:`angle_to(Vector3) -> float`
Returns the angle between self and the given vector.
.. ## Vector3.angle_to ##
.. method:: as_spherical
| :sl:`returns a tuple with radial distance, inclination and azimuthal angle.`
| :sg:`as_spherical() -> (r, theta, phi)`
Returns a tuple (r, theta, phi) where r is the radial distance, theta is
the inclination angle and phi is the azimuthal angle.
.. ## Vector3.as_spherical ##
.. method:: from_spherical
| :sl:`Sets x, y and z from a spherical coordinates 3-tuple.`
| :sg:`from_spherical((r, theta, phi)) -> None`
Sets x, y and z from a tuple (r, theta, phi) where r is the radial
distance, theta is the inclination angle and phi is the azimuthal angle.
.. ## Vector3.from_spherical ##
.. ## ##
.. ## pygame.math.Vector3 ##
.. function:: enable_swizzling
| :sl:`globally enables swizzling for vectors.`
| :sg:`enable_swizzling() -> None`
DEPRECATED: Not needed anymore. Will be removed in a later version.
Enables swizzling for all vectors until ``disable_swizzling()`` is called.
By default swizzling is disabled.
.. ## pygame.math.enable_swizzling ##
.. function:: disable_swizzling
| :sl:`globally disables swizzling for vectors.`
| :sg:`disable_swizzling() -> None`
DEPRECATED: Not needed anymore. Will be removed in a later version.
Disables swizzling for all vectors until ``enable_swizzling()`` is called.
By default swizzling is disabled.
.. ## pygame.math.disable_swizzling ##
.. ## pygame.math ##
|