1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
#!/usr/bin/env python
""" pygame.examples.glcube
Draw a cube on the screen.
Amazing.
Every frame we orbit the camera around a small amount
creating the illusion of a spinning object.
First we setup some points of a multicolored cube. Then we then go through
a semi-unoptimized loop to draw the cube points onto the screen.
OpenGL does all the hard work for us. :]
Keyboard Controls
-----------------
* ESCAPE key to quit
* f key to toggle fullscreen.
"""
import math
import ctypes
import pygame as pg
try:
import OpenGL.GL as GL
import OpenGL.GLU as GLU
except ImportError:
print("pyopengl missing. The GLCUBE example requires: pyopengl numpy")
raise SystemExit
try:
from numpy import array, dot, eye, zeros, float32, uint32
except ImportError:
print("numpy missing. The GLCUBE example requires: pyopengl numpy")
raise SystemExit
# do we want to use the 'modern' OpenGL API or the old one?
# This example shows you how to do both.
USE_MODERN_GL = True
# Some simple data for a colored cube here we have the 3D point position
# and color for each corner. A list of indices describes each face, and a
# list of indices describes each edge.
CUBE_POINTS = (
(0.5, -0.5, -0.5),
(0.5, 0.5, -0.5),
(-0.5, 0.5, -0.5),
(-0.5, -0.5, -0.5),
(0.5, -0.5, 0.5),
(0.5, 0.5, 0.5),
(-0.5, -0.5, 0.5),
(-0.5, 0.5, 0.5),
)
# colors are 0-1 floating values
CUBE_COLORS = (
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 0),
(1, 0, 1),
(1, 1, 1),
(0, 0, 1),
(0, 1, 1),
)
CUBE_QUAD_VERTS = (
(0, 1, 2, 3),
(3, 2, 7, 6),
(6, 7, 5, 4),
(4, 5, 1, 0),
(1, 5, 7, 2),
(4, 0, 3, 6),
)
CUBE_EDGES = (
(0, 1),
(0, 3),
(0, 4),
(2, 1),
(2, 3),
(2, 7),
(6, 3),
(6, 4),
(6, 7),
(5, 1),
(5, 4),
(5, 7),
)
def translate(matrix, x=0.0, y=0.0, z=0.0):
"""
Translate (move) a matrix in the x, y and z axes.
:param matrix: Matrix to translate.
:param x: direction and magnitude to translate in x axis. Defaults to 0.
:param y: direction and magnitude to translate in y axis. Defaults to 0.
:param z: direction and magnitude to translate in z axis. Defaults to 0.
:return: The translated matrix.
"""
translation_matrix = array(
[
[1.0, 0.0, 0.0, x],
[0.0, 1.0, 0.0, y],
[0.0, 0.0, 1.0, z],
[0.0, 0.0, 0.0, 1.0],
],
dtype=matrix.dtype,
).T
matrix[...] = dot(matrix, translation_matrix)
return matrix
def frustum(left, right, bottom, top, znear, zfar):
"""
Build a perspective matrix from the clipping planes, or camera 'frustrum'
volume.
:param left: left position of the near clipping plane.
:param right: right position of the near clipping plane.
:param bottom: bottom position of the near clipping plane.
:param top: top position of the near clipping plane.
:param znear: z depth of the near clipping plane.
:param zfar: z depth of the far clipping plane.
:return: A perspective matrix.
"""
perspective_matrix = zeros((4, 4), dtype=float32)
perspective_matrix[0, 0] = +2.0 * znear / (right - left)
perspective_matrix[2, 0] = (right + left) / (right - left)
perspective_matrix[1, 1] = +2.0 * znear / (top - bottom)
perspective_matrix[3, 1] = (top + bottom) / (top - bottom)
perspective_matrix[2, 2] = -(zfar + znear) / (zfar - znear)
perspective_matrix[3, 2] = -2.0 * znear * zfar / (zfar - znear)
perspective_matrix[2, 3] = -1.0
return perspective_matrix
def perspective(fovy, aspect, znear, zfar):
"""
Build a perspective matrix from field of view, aspect ratio and depth
planes.
:param fovy: the field of view angle in the y axis.
:param aspect: aspect ratio of our view port.
:param znear: z depth of the near clipping plane.
:param zfar: z depth of the far clipping plane.
:return: A perspective matrix.
"""
h = math.tan(fovy / 360.0 * math.pi) * znear
w = h * aspect
return frustum(-w, w, -h, h, znear, zfar)
def rotate(matrix, angle, x, y, z):
"""
Rotate a matrix around an axis.
:param matrix: The matrix to rotate.
:param angle: The angle to rotate by.
:param x: x of axis to rotate around.
:param y: y of axis to rotate around.
:param z: z of axis to rotate around.
:return: The rotated matrix
"""
angle = math.pi * angle / 180
c, s = math.cos(angle), math.sin(angle)
n = math.sqrt(x * x + y * y + z * z)
x, y, z = x / n, y / n, z / n
cx, cy, cz = (1 - c) * x, (1 - c) * y, (1 - c) * z
rotation_matrix = array(
[
[cx * x + c, cy * x - z * s, cz * x + y * s, 0],
[cx * y + z * s, cy * y + c, cz * y - x * s, 0],
[cx * z - y * s, cy * z + x * s, cz * z + c, 0],
[0, 0, 0, 1],
],
dtype=matrix.dtype,
).T
matrix[...] = dot(matrix, rotation_matrix)
return matrix
class Rotation:
"""
Data class that stores rotation angles in three axes.
"""
def __init__(self):
self.theta = 20
self.phi = 40
self.psi = 25
def drawcube_old():
"""
Draw the cube using the old open GL methods pre 3.2 core context.
"""
allpoints = list(zip(CUBE_POINTS, CUBE_COLORS))
GL.glBegin(GL.GL_QUADS)
for face in CUBE_QUAD_VERTS:
for vert in face:
pos, color = allpoints[vert]
GL.glColor3fv(color)
GL.glVertex3fv(pos)
GL.glEnd()
GL.glColor3f(1.0, 1.0, 1.0)
GL.glBegin(GL.GL_LINES)
for line in CUBE_EDGES:
for vert in line:
pos, color = allpoints[vert]
GL.glVertex3fv(pos)
GL.glEnd()
def init_gl_stuff_old():
"""
Initialise open GL, prior to core context 3.2
"""
GL.glEnable(GL.GL_DEPTH_TEST) # use our zbuffer
# setup the camera
GL.glMatrixMode(GL.GL_PROJECTION)
GL.glLoadIdentity()
GLU.gluPerspective(45.0, 640 / 480.0, 0.1, 100.0) # setup lens
GL.glTranslatef(0.0, 0.0, -3.0) # move back
GL.glRotatef(25, 1, 0, 0) # orbit higher
def init_gl_modern(display_size):
"""
Initialise open GL in the 'modern' open GL style for open GL versions
greater than 3.1.
:param display_size: Size of the window/viewport.
"""
# Create shaders
# --------------------------------------
vertex_code = """
#version 150
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
uniform vec4 colour_mul;
uniform vec4 colour_add;
in vec4 vertex_colour; // vertex colour in
in vec3 vertex_position;
out vec4 vertex_color_out; // vertex colour out
void main()
{
vertex_color_out = (colour_mul * vertex_colour) + colour_add;
gl_Position = projection * view * model * vec4(vertex_position, 1.0);
}
"""
fragment_code = """
#version 150
in vec4 vertex_color_out; // vertex colour from vertex shader
out vec4 fragColor;
void main()
{
fragColor = vertex_color_out;
}
"""
program = GL.glCreateProgram()
vertex = GL.glCreateShader(GL.GL_VERTEX_SHADER)
fragment = GL.glCreateShader(GL.GL_FRAGMENT_SHADER)
GL.glShaderSource(vertex, vertex_code)
GL.glCompileShader(vertex)
# this logs issues the shader compiler finds.
log = GL.glGetShaderInfoLog(vertex)
if isinstance(log, bytes):
log = log.decode()
for line in log.split("\n"):
print(line)
GL.glAttachShader(program, vertex)
GL.glShaderSource(fragment, fragment_code)
GL.glCompileShader(fragment)
# this logs issues the shader compiler finds.
log = GL.glGetShaderInfoLog(fragment)
if isinstance(log, bytes):
log = log.decode()
for line in log.split("\n"):
print(line)
GL.glAttachShader(program, fragment)
GL.glValidateProgram(program)
GL.glLinkProgram(program)
GL.glDetachShader(program, vertex)
GL.glDetachShader(program, fragment)
GL.glUseProgram(program)
# Create vertex buffers and shader constants
# ------------------------------------------
# Cube Data
vertices = zeros(
8, [("vertex_position", float32, 3), ("vertex_colour", float32, 4)]
)
vertices["vertex_position"] = [
[1, 1, 1],
[-1, 1, 1],
[-1, -1, 1],
[1, -1, 1],
[1, -1, -1],
[1, 1, -1],
[-1, 1, -1],
[-1, -1, -1],
]
vertices["vertex_colour"] = [
[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 1, 0, 1],
[1, 1, 0, 1],
[1, 1, 1, 1],
[1, 0, 1, 1],
[1, 0, 0, 1],
]
filled_cube_indices = array(
[
0,
1,
2,
0,
2,
3,
0,
3,
4,
0,
4,
5,
0,
5,
6,
0,
6,
1,
1,
6,
7,
1,
7,
2,
7,
4,
3,
7,
3,
2,
4,
7,
6,
4,
6,
5,
],
dtype=uint32,
)
outline_cube_indices = array(
[0, 1, 1, 2, 2, 3, 3, 0, 4, 7, 7, 6, 6, 5, 5, 4, 0, 5, 1, 6, 2, 7, 3, 4],
dtype=uint32,
)
shader_data = {"buffer": {}, "constants": {}}
GL.glBindVertexArray(GL.glGenVertexArrays(1)) # Have to do this first
shader_data["buffer"]["vertices"] = GL.glGenBuffers(1)
GL.glBindBuffer(GL.GL_ARRAY_BUFFER, shader_data["buffer"]["vertices"])
GL.glBufferData(GL.GL_ARRAY_BUFFER, vertices.nbytes, vertices, GL.GL_DYNAMIC_DRAW)
stride = vertices.strides[0]
offset = ctypes.c_void_p(0)
loc = GL.glGetAttribLocation(program, "vertex_position")
GL.glEnableVertexAttribArray(loc)
GL.glVertexAttribPointer(loc, 3, GL.GL_FLOAT, False, stride, offset)
offset = ctypes.c_void_p(vertices.dtype["vertex_position"].itemsize)
loc = GL.glGetAttribLocation(program, "vertex_colour")
GL.glEnableVertexAttribArray(loc)
GL.glVertexAttribPointer(loc, 4, GL.GL_FLOAT, False, stride, offset)
shader_data["buffer"]["filled"] = GL.glGenBuffers(1)
GL.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, shader_data["buffer"]["filled"])
GL.glBufferData(
GL.GL_ELEMENT_ARRAY_BUFFER,
filled_cube_indices.nbytes,
filled_cube_indices,
GL.GL_STATIC_DRAW,
)
shader_data["buffer"]["outline"] = GL.glGenBuffers(1)
GL.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, shader_data["buffer"]["outline"])
GL.glBufferData(
GL.GL_ELEMENT_ARRAY_BUFFER,
outline_cube_indices.nbytes,
outline_cube_indices,
GL.GL_STATIC_DRAW,
)
shader_data["constants"]["model"] = GL.glGetUniformLocation(program, "model")
GL.glUniformMatrix4fv(shader_data["constants"]["model"], 1, False, eye(4))
shader_data["constants"]["view"] = GL.glGetUniformLocation(program, "view")
view = translate(eye(4), z=-6)
GL.glUniformMatrix4fv(shader_data["constants"]["view"], 1, False, view)
shader_data["constants"]["projection"] = GL.glGetUniformLocation(
program, "projection"
)
GL.glUniformMatrix4fv(shader_data["constants"]["projection"], 1, False, eye(4))
# This colour is multiplied with the base vertex colour in producing
# the final output
shader_data["constants"]["colour_mul"] = GL.glGetUniformLocation(
program, "colour_mul"
)
GL.glUniform4f(shader_data["constants"]["colour_mul"], 1, 1, 1, 1)
# This colour is added on to the base vertex colour in producing
# the final output
shader_data["constants"]["colour_add"] = GL.glGetUniformLocation(
program, "colour_add"
)
GL.glUniform4f(shader_data["constants"]["colour_add"], 0, 0, 0, 0)
# Set GL drawing data
# -------------------
GL.glClearColor(0, 0, 0, 0)
GL.glPolygonOffset(1, 1)
GL.glEnable(GL.GL_LINE_SMOOTH)
GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA)
GL.glDepthFunc(GL.GL_LESS)
GL.glHint(GL.GL_LINE_SMOOTH_HINT, GL.GL_NICEST)
GL.glLineWidth(1.0)
projection = perspective(45.0, display_size[0] / float(display_size[1]), 2.0, 100.0)
GL.glUniformMatrix4fv(shader_data["constants"]["projection"], 1, False, projection)
return shader_data, filled_cube_indices, outline_cube_indices
def draw_cube_modern(shader_data, filled_cube_indices, outline_cube_indices, rotation):
"""
Draw a cube in the 'modern' Open GL style, for post 3.1 versions of
open GL.
:param shader_data: compile vertex & pixel shader data for drawing a cube.
:param filled_cube_indices: the indices to draw the 'filled' cube.
:param outline_cube_indices: the indices to draw the 'outline' cube.
:param rotation: the current rotations to apply.
"""
GL.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT)
# Filled cube
GL.glDisable(GL.GL_BLEND)
GL.glEnable(GL.GL_DEPTH_TEST)
GL.glEnable(GL.GL_POLYGON_OFFSET_FILL)
GL.glUniform4f(shader_data["constants"]["colour_mul"], 1, 1, 1, 1)
GL.glUniform4f(shader_data["constants"]["colour_add"], 0, 0, 0, 0.0)
GL.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, shader_data["buffer"]["filled"])
GL.glDrawElements(
GL.GL_TRIANGLES, len(filled_cube_indices), GL.GL_UNSIGNED_INT, None
)
# Outlined cube
GL.glDisable(GL.GL_POLYGON_OFFSET_FILL)
GL.glEnable(GL.GL_BLEND)
GL.glUniform4f(shader_data["constants"]["colour_mul"], 0, 0, 0, 0.0)
GL.glUniform4f(shader_data["constants"]["colour_add"], 1, 1, 1, 1.0)
GL.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, shader_data["buffer"]["outline"])
GL.glDrawElements(GL.GL_LINES, len(outline_cube_indices), GL.GL_UNSIGNED_INT, None)
# Rotate cube
# rotation.theta += 1.0 # degrees
rotation.phi += 1.0 # degrees
# rotation.psi += 1.0 # degrees
model = eye(4, dtype=float32)
# rotate(model, rotation.theta, 0, 0, 1)
rotate(model, rotation.phi, 0, 1, 0)
rotate(model, rotation.psi, 1, 0, 0)
GL.glUniformMatrix4fv(shader_data["constants"]["model"], 1, False, model)
def main():
"""run the demo"""
# initialize pygame and setup an opengl display
pg.init()
gl_version = (3, 0) # GL Version number (Major, Minor)
if USE_MODERN_GL:
gl_version = (3, 2) # GL Version number (Major, Minor)
# By setting these attributes we can choose which Open GL Profile
# to use, profiles greater than 3.2 use a different rendering path
pg.display.gl_set_attribute(pg.GL_CONTEXT_MAJOR_VERSION, gl_version[0])
pg.display.gl_set_attribute(pg.GL_CONTEXT_MINOR_VERSION, gl_version[1])
pg.display.gl_set_attribute(
pg.GL_CONTEXT_PROFILE_MASK, pg.GL_CONTEXT_PROFILE_CORE
)
fullscreen = False # start in windowed mode
display_size = (640, 480)
pg.display.set_mode(display_size, pg.OPENGL | pg.DOUBLEBUF | pg.RESIZABLE)
if USE_MODERN_GL:
gpu, f_indices, o_indices = init_gl_modern(display_size)
rotation = Rotation()
else:
init_gl_stuff_old()
going = True
while going:
# check for quit'n events
events = pg.event.get()
for event in events:
if event.type == pg.QUIT or (
event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE
):
going = False
elif event.type == pg.KEYDOWN and event.key == pg.K_f:
if not fullscreen:
print("Changing to FULLSCREEN")
pg.display.set_mode(
(640, 480), pg.OPENGL | pg.DOUBLEBUF | pg.FULLSCREEN
)
else:
print("Changing to windowed mode")
pg.display.set_mode((640, 480), pg.OPENGL | pg.DOUBLEBUF)
fullscreen = not fullscreen
if gl_version[0] >= 4 or (gl_version[0] == 3 and gl_version[1] >= 2):
gpu, f_indices, o_indices = init_gl_modern(display_size)
rotation = Rotation()
else:
init_gl_stuff_old()
if USE_MODERN_GL:
draw_cube_modern(gpu, f_indices, o_indices, rotation)
else:
# clear screen and move camera
GL.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT)
# orbit camera around by 1 degree
GL.glRotatef(1, 0, 1, 0)
drawcube_old()
pg.display.flip()
pg.time.wait(10)
pg.quit()
if __name__ == "__main__":
main()
|