1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
.. Copyright 2014 David Malcolm <dmalcolm@redhat.com>
Copyright 2014 Red Hat, Inc.
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
Creating a trivial machine code function
----------------------------------------
Consider this C function:
.. code-block:: c
int square(int i)
{
return i * i;
}
How can we construct this from within Python using libgccjit?
First we need to import the Python bindings to libgccjit:
>>> import gccjit
All state associated with compilation is associated with a
:py:class:`gccjit.Context`:
>>> ctxt = gccjit.Context()
The JIT library has a system of types. It is statically-typed: every
expression is of a specific type, fixed at compile-time. In our example,
all of the expressions are of the C `int` type, so let's obtain this from
the context, as a :py:class:`gccjit.Type`:
>>> int_type = ctxt.get_type(gccjit.TypeKind.INT)
The various objects in the API have reasonable `__str__` methods:
>>> print(int_type)
int
Let's create the function. To do so, we first need to construct
its single parameter, specifying its type and giving it a name:
>>> param_i = ctxt.new_param(int_type, b'i')
>>> print(param_i)
i
Now we can create the function:
>>> fn = ctxt.new_function(gccjit.FunctionKind.EXPORTED,
... int_type, # return type
... b"square", # name
... [param_i]) # params
>>> print(fn)
square
To define the code within the function, we must create basic blocks
containing statements.
Every basic block contains a list of statements, eventually terminated
by a statement that either returns, or jumps to another basic block.
Our function has no control-flow, so we just need one basic block:
>>> block = fn.new_block(b'entry')
>>> print(block)
entry
Our basic block is relatively simple: it immediately terminates by
returning the value of an expression. We can build the expression:
>>> expr = ctxt.new_binary_op(gccjit.BinaryOp.MULT,
... int_type,
... param_i, param_i)
>>> print(expr)
i * i
This in itself doesn't do anything; we have to add this expression to
a statement within the block. In this case, we use it to build a
return statement, which terminates the basic block:
>>> block.end_with_return(expr)
OK, we've populated the context. We can now compile it:
>>> jit_result = ctxt.compile()
and get a :py:class:`gccjit.Result`.
We can now look up a specific machine code routine within the result,
in this case, the function we created above:
>>> void_ptr = jit_result.get_code(b"square")
We can now use ctypes.CFUNCTYPE to turn it into something we can call
from Python:
>>> import ctypes
>>> int_int_func_type = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_int)
>>> callable = int_int_func_type(void_ptr)
It should now be possible to run the code:
>>> callable(5)
25
Options
*******
To get more information on what's going on, you can set debugging flags
on the context using :py:meth:`gccjit.Context.set_bool_option`.
.. (I'm deliberately not mentioning
:py:data:`gccjit.BoolOption.DUMP_INITIAL_TREE` here since I think
it's probably more of use to implementors than to users)
Setting :py:data:`gccjit.BoolOption.DUMP_INITIAL_GIMPLE` will dump a
C-like representation to stderr when you compile (GCC's "GIMPLE"
representation)::
>>> ctxt.set_bool_option(gccjit.BoolOption.DUMP_INITIAL_GIMPLE, True)
>>> jit_result = ctxt.compile()
square (signed int i)
{
signed int D.260;
entry:
D.260 = i * i;
return D.260;
}
We can see the generated machine code in assembler form (on stderr) by
setting :py:data:`gccjit.BoolOption.DUMP_GENERATED_CODE` on the context
before compiling:
>>> ctxt.set_bool_option(gccjit.BoolOption.DUMP_GENERATED_CODE, True)
>>> jit_result = ctxt.compile()
.file "fake.c"
.text
.globl square
.type square, @function
square:
.LFB6:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl %edi, -4(%rbp)
.L14:
movl -4(%rbp), %eax
imull -4(%rbp), %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE6:
.size square, .-square
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
.section .note.GNU-stack,"",@progbits
By default, no optimizations are performed, the equivalent of GCC's
`-O0` option. We can turn things up to e.g. `-O3` by calling
:py:meth:`gccjit.Context.set_int_option` with
:py:data:`gccjit.IntOption.OPTIMIZATION_LEVEL`:
>>> ctxt.set_int_option(gccjit.IntOption.OPTIMIZATION_LEVEL, 3)
>>> jit_result = ctxt.compile()
.file "fake.c"
.text
.p2align 4,,15
.globl square
.type square, @function
square:
.LFB7:
.cfi_startproc
.L16:
movl %edi, %eax
imull %edi, %eax
ret
.cfi_endproc
.LFE7:
.size square, .-square
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
.section .note.GNU-stack,"",@progbits
Naturally this has only a small effect on such a trivial function.
Full example
************
Here's what the above looks like as a complete program:
.. literalinclude:: ../../examples/square.py
:lines: 27-
:language: python
|