File: trivial-example.rst

package info (click to toggle)
pygccjit 0.4-12.1
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 396 kB
  • sloc: python: 551; makefile: 140
file content (209 lines) | stat: -rw-r--r-- 6,085 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
.. Copyright 2014 David Malcolm <dmalcolm@redhat.com>
   Copyright 2014 Red Hat, Inc.

   This is free software: you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see
   <http://www.gnu.org/licenses/>.

Creating a trivial machine code function
----------------------------------------
Consider this C function:

 .. code-block:: c

   int square(int i)
   {
     return i * i;
   }

How can we construct this from within Python using libgccjit?

First we need to import the Python bindings to libgccjit:

>>> import gccjit

All state associated with compilation is associated with a
:py:class:`gccjit.Context`:

>>> ctxt = gccjit.Context()

The JIT library has a system of types.  It is statically-typed: every
expression is of a specific type, fixed at compile-time.  In our example,
all of the expressions are of the C `int` type, so let's obtain this from
the context, as a :py:class:`gccjit.Type`:

>>> int_type = ctxt.get_type(gccjit.TypeKind.INT)

The various objects in the API have reasonable `__str__` methods:

>>> print(int_type)
int

Let's create the function.  To do so, we first need to construct
its single parameter, specifying its type and giving it a name:

>>> param_i = ctxt.new_param(int_type, b'i')
>>> print(param_i)
i

Now we can create the function:

>>> fn = ctxt.new_function(gccjit.FunctionKind.EXPORTED,
...                        int_type, # return type
...                        b"square", # name
...                        [param_i]) # params
>>> print(fn)
square

To define the code within the function, we must create basic blocks
containing statements.

Every basic block contains a list of statements, eventually terminated
by a statement that either returns, or jumps to another basic block.

Our function has no control-flow, so we just need one basic block:

>>> block = fn.new_block(b'entry')
>>> print(block)
entry

Our basic block is relatively simple: it immediately terminates by
returning the value of an expression.  We can build the expression:

>>> expr = ctxt.new_binary_op(gccjit.BinaryOp.MULT,
...                           int_type,
...                           param_i, param_i)
>>> print(expr)
i * i

This in itself doesn't do anything; we have to add this expression to
a statement within the block.  In this case, we use it to build a
return statement, which terminates the basic block:

>>> block.end_with_return(expr)

OK, we've populated the context.  We can now compile it:

>>> jit_result = ctxt.compile()

and get a :py:class:`gccjit.Result`.

We can now look up a specific machine code routine within the result,
in this case, the function we created above:

>>> void_ptr = jit_result.get_code(b"square")

We can now use ctypes.CFUNCTYPE to turn it into something we can call
from Python:

>>> import ctypes
>>> int_int_func_type = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_int)
>>> callable = int_int_func_type(void_ptr)

It should now be possible to run the code:

>>> callable(5)
25

Options
*******

To get more information on what's going on, you can set debugging flags
on the context using :py:meth:`gccjit.Context.set_bool_option`.

.. (I'm deliberately not mentioning
    :py:data:`gccjit.BoolOption.DUMP_INITIAL_TREE` here since I think
    it's probably more of use to implementors than to users)

Setting :py:data:`gccjit.BoolOption.DUMP_INITIAL_GIMPLE` will dump a
C-like representation to stderr when you compile (GCC's "GIMPLE"
representation)::

  >>> ctxt.set_bool_option(gccjit.BoolOption.DUMP_INITIAL_GIMPLE, True)
  >>> jit_result = ctxt.compile()
  square (signed int i)
  {
    signed int D.260;

    entry:
    D.260 = i * i;
    return D.260;
  }

We can see the generated machine code in assembler form (on stderr) by
setting :py:data:`gccjit.BoolOption.DUMP_GENERATED_CODE` on the context
before compiling:

>>> ctxt.set_bool_option(gccjit.BoolOption.DUMP_GENERATED_CODE, True)
>>> jit_result = ctxt.compile()
        .file   "fake.c"
        .text
        .globl  square
        .type   square, @function
square:
.LFB6:
        .cfi_startproc
        pushq   %rbp
        .cfi_def_cfa_offset 16
        .cfi_offset 6, -16
        movq    %rsp, %rbp
        .cfi_def_cfa_register 6
        movl    %edi, -4(%rbp)
.L14:
        movl    -4(%rbp), %eax
        imull   -4(%rbp), %eax
        popq    %rbp
        .cfi_def_cfa 7, 8
        ret
        .cfi_endproc
.LFE6:
        .size   square, .-square
        .ident  "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
        .section       .note.GNU-stack,"",@progbits

By default, no optimizations are performed, the equivalent of GCC's
`-O0` option.  We can turn things up to e.g. `-O3` by calling
:py:meth:`gccjit.Context.set_int_option` with
:py:data:`gccjit.IntOption.OPTIMIZATION_LEVEL`:

>>> ctxt.set_int_option(gccjit.IntOption.OPTIMIZATION_LEVEL, 3)
>>> jit_result = ctxt.compile()
        .file   "fake.c"
        .text
        .p2align 4,,15
        .globl  square
        .type   square, @function
square:
.LFB7:
        .cfi_startproc
.L16:
        movl    %edi, %eax
        imull   %edi, %eax
        ret
        .cfi_endproc
.LFE7:
        .size   square, .-square
        .ident  "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
        .section        .note.GNU-stack,"",@progbits

Naturally this has only a small effect on such a trivial function.


Full example
************

Here's what the above looks like as a complete program:

   .. literalinclude:: ../../examples/square.py
    :lines: 27-
    :language: python