1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
---------------------------------------------------------------------
-- SmallCheck: another lightweight testing library.
-- Colin Runciman, August 2006
-- Version 0.2 (November 2006)
--
-- After QuickCheck, by Koen Claessen and John Hughes (2000-2004).
---------------------------------------------------------------------
module SmallCheck (
smallCheck, depthCheck,
Property, Testable,
forAll, forAllElem,
exists, existsDeeperBy, thereExists, thereExistsElem,
(==>),
Series, Serial(..),
(\/), (><), two, three, four,
cons0, cons1, cons2, cons3, cons4,
alts0, alts1, alts2, alts3, alts4,
N(..), Nat, Natural,
depth, inc, dec
) where
import Data.List (intersperse)
import Control.Monad (when)
import System.IO (stdout, hFlush)
------------------ <Series of depth-bounded values> -----------------
-- Series arguments should be interpreted as a depth bound (>=0)
-- Series results should have finite length
type Series a = Int -> [a]
-- sum
infixr 7 \/
(\/) :: Series a -> Series a -> Series a
s1 \/ s2 = \d -> s1 d ++ s2 d
-- product
infixr 8 ><
(><) :: Series a -> Series b -> Series (a,b)
s1 >< s2 = \d -> [(x,y) | x <- s1 d, y <- s2 d]
------------------- <methods for type enumeration> ------------------
-- enumerated data values should be finite and fully defined
-- enumerated functional values should be total and strict
-- bounds:
-- for data values, the depth of nested constructor applications
-- for functional values, both the depth of nested case analysis
-- and the depth of results
class Serial a where
series :: Series a
coseries :: Serial b => Series (a->b)
instance Serial () where
series _ = [()]
coseries d = [ \() -> b
| b <- series d ]
instance Serial Int where
series d = [(-d)..d]
coseries d = [ \i -> if i > 0 then f (N (i - 1))
else if i < 0 then g (N (abs i - 1))
else z
| z <- alts0 d, f <- alts1 d, g <- alts1 d ]
instance Serial Integer where
series d = [ toInteger (i :: Int)
| i <- series d ]
coseries d = [ f . (fromInteger :: Integer->Int)
| f <- series d ]
newtype N a = N a
instance Show a => Show (N a) where
show (N i) = show i
instance (Integral a, Serial a) => Serial (N a) where
series d = map N [0..d']
where
d' = fromInteger (toInteger d)
coseries d = [ \(N i) -> if i > 0 then f (N (i - 1))
else z
| z <- alts0 d, f <- alts1 d ]
type Nat = N Int
type Natural = N Integer
instance Serial Float where
series d = [ encodeFloat sig exp
| (sig,exp) <- series d,
odd sig || sig==0 && exp==0 ]
coseries d = [ f . decodeFloat
| f <- series d ]
instance Serial Double where
series d = [ frac (x :: Float)
| x <- series d ]
coseries d = [ f . (frac :: Double->Float)
| f <- series d ]
frac :: (Real a, Fractional a, Real b, Fractional b) => a -> b
frac = fromRational . toRational
instance Serial Char where
series d = take (d+1) ['a'..'z']
coseries d = [ \c -> f (N (fromEnum c - fromEnum 'a'))
| f <- series d ]
instance (Serial a, Serial b) =>
Serial (a,b) where
series = series >< series
coseries = map uncurry . coseries
instance (Serial a, Serial b, Serial c) =>
Serial (a,b,c) where
series = \d -> [(a,b,c) | (a,(b,c)) <- series d]
coseries = map uncurry3 . coseries
instance (Serial a, Serial b, Serial c, Serial d) =>
Serial (a,b,c,d) where
series = \d -> [(a,b,c,d) | (a,(b,(c,d))) <- series d]
coseries = map uncurry4 . coseries
uncurry3 :: (a->b->c->d) -> ((a,b,c)->d)
uncurry3 f (x,y,z) = f x y z
uncurry4 :: (a->b->c->d->e) -> ((a,b,c,d)->e)
uncurry4 f (w,x,y,z) = f w x y z
two :: Series a -> Series (a,a)
two s = s >< s
three :: Series a -> Series (a,a,a)
three s = \d -> [(x,y,z) | (x,(y,z)) <- (s >< s >< s) d]
four :: Series a -> Series (a,a,a,a)
four s = \d -> [(w,x,y,z) | (w,(x,(y,z))) <- (s >< s >< s >< s) d]
cons0 ::
a -> Series a
cons0 c _ = [c]
cons1 :: Serial a =>
(a->b) -> Series b
cons1 c d = [c z | d > 0, z <- series (d-1)]
cons2 :: (Serial a, Serial b) =>
(a->b->c) -> Series c
cons2 c d = [c y z | d > 0, (y,z) <- series (d-1)]
cons3 :: (Serial a, Serial b, Serial c) =>
(a->b->c->d) -> Series d
cons3 c d = [c x y z | d > 0, (x,y,z) <- series (d-1)]
cons4 :: (Serial a, Serial b, Serial c, Serial d) =>
(a->b->c->d->e) -> Series e
cons4 c d = [c w x y z | d > 0, (w,x,y,z) <- series (d-1)]
alts0 :: Serial a =>
Series a
alts0 d = series d
alts1 :: (Serial a, Serial b) =>
Series (a->b)
alts1 d = if d > 0 then series (dec d)
else [\_ -> x | x <- series d]
alts2 :: (Serial a, Serial b, Serial c) =>
Series (a->b->c)
alts2 d = if d > 0 then series (dec d)
else [\_ _ -> x | x <- series d]
alts3 :: (Serial a, Serial b, Serial c, Serial d) =>
Series (a->b->c->d)
alts3 d = if d > 0 then series (dec d)
else [\_ _ _ -> x | x <- series d]
alts4 :: (Serial a, Serial b, Serial c, Serial d, Serial e) =>
Series (a->b->c->d->e)
alts4 d = if d > 0 then series (dec d)
else [\_ _ _ _ -> x | x <- series d]
instance Serial Bool where
series = cons0 True \/ cons0 False
coseries d = [ \x -> if x then b1 else b2
| (b1,b2) <- series d ]
instance Serial a => Serial (Maybe a) where
series = cons0 Nothing \/ cons1 Just
coseries d = [ \m -> case m of
Nothing -> z
Just x -> f x
| z <- alts0 d ,
f <- alts1 d ]
instance (Serial a, Serial b) => Serial (Either a b) where
series = cons1 Left \/ cons1 Right
coseries d = [ \e -> case e of
Left x -> f x
Right y -> g y
| f <- alts1 d ,
g <- alts1 d ]
instance Serial a => Serial [a] where
series = cons0 [] \/ cons2 (:)
coseries d = [ \xs -> case xs of
[] -> y
(x:xs') -> f x xs'
| y <- alts0 d ,
f <- alts2 d ]
-- Warning: the coseries instance here may generate duplicates.
instance (Serial a, Serial b) => Serial (a->b) where
series = coseries
coseries d = [ \f -> g [f x | x <- series d]
| g <- series d ]
-- For customising the depth measure. Use with care!
depth :: Int -> Int -> Int
depth d d' | d >= 0 = d'+1-d
| otherwise = error "SmallCheck.depth: argument < 0"
dec :: Int -> Int
dec d | d > 0 = d-1
| otherwise = error "SmallCheck.dec: argument <= 0"
inc :: Int -> Int
inc d = d+1
-- show the extension of a function (in part, bounded both by
-- the number and depth of arguments)
instance (Serial a, Show a, Show b) => Show (a->b) where
show f =
if maxarheight == 1
&& sumarwidth + length ars * length "->;" < widthLimit then
"{"++(
concat $ intersperse ";" $ [a++"->"++r | (a,r) <- ars]
)++"}"
else
concat $ [a++"->\n"++indent r | (a,r) <- ars]
where
ars = take lengthLimit [ (show x, show (f x))
| x <- series depthLimit ]
maxarheight = maximum [ max (height a) (height r)
| (a,r) <- ars ]
sumarwidth = sum [ length a + length r
| (a,r) <- ars]
indent = unlines . map (" "++) . lines
height = length . lines
(widthLimit,lengthLimit,depthLimit) = (80,20,3)::(Int,Int,Int)
---------------- <properties and their evaluation> ------------------
-- adapted from QuickCheck originals: here results come in lists,
-- properties have depth arguments, stamps (for classifying random
-- tests) are omitted, existentials are introduced
newtype PR = Prop [Result]
data Result = Result {ok :: Maybe Bool, arguments :: [String]}
nothing :: Result
nothing = Result {ok = Nothing, arguments = []}
result :: Result -> PR
result res = Prop [res]
newtype Property = Property (Int -> PR)
class Testable a where
property :: a -> Int -> PR
instance Testable Bool where
property b _ = Prop [Result (Just b) []]
instance Testable PR where
property prop _ = prop
instance (Serial a, Show a, Testable b) => Testable (a->b) where
property f = f' where Property f' = forAll series f
instance Testable Property where
property (Property f) d = f d
evaluate :: Testable a => a -> Series Result
evaluate x d = rs where Prop rs = property x d
forAll :: (Show a, Testable b) => Series a -> (a->b) -> Property
forAll xs f = Property $ \d -> Prop $
[ r{arguments = show x : arguments r}
| x <- xs d, r <- evaluate (f x) d ]
forAllElem :: (Show a, Testable b) => [a] -> (a->b) -> Property
forAllElem xs = forAll (const xs)
thereExists :: Testable b => Series a -> (a->b) -> Property
thereExists xs f = Property $ \d -> Prop $
[ Result
( Just $ or [ all pass (evaluate (f x) d)
| x <- xs d ] )
[] ]
where
pass (Result Nothing _) = True
pass (Result (Just b) _) = b
thereExistsElem :: Testable b => [a] -> (a->b) -> Property
thereExistsElem xs = thereExists (const xs)
exists :: (Serial a, Testable b) =>
(a->b) -> Property
exists = thereExists series
existsDeeperBy :: (Serial a, Testable b) =>
(Int->Int) -> (a->b) -> Property
existsDeeperBy f = thereExists (series . f)
infixr 0 ==>
(==>) :: Testable a => Bool -> a -> Property
True ==> x = Property (property x)
False ==> x = Property (const (result nothing))
--------------------- <top-level test drivers> ----------------------
-- similar in spirit to QuickCheck but with iterative deepening
-- test for values of depths 0..d stopping when a property
-- fails or when it has been checked for all these values
smallCheck :: Testable a => Int -> a -> IO String
smallCheck d = iterCheck 0 (Just d)
depthCheck :: Testable a => Int -> a -> IO String
depthCheck d = iterCheck d (Just d)
iterCheck :: Testable a => Int -> Maybe Int -> a -> IO String
iterCheck dFrom mdTo t = iter dFrom
where
iter :: Int -> IO String
iter d = do
let Prop results = property t d
(ok,s) <- check (mdTo==Nothing) 0 0 True results
maybe (iter (d+1))
(\dTo -> if ok && d < dTo
then iter (d+1)
else return s)
mdTo
check :: Bool -> Int -> Int -> Bool -> [Result] -> IO (Bool, String)
check i n x ok rs | null rs = do
let s = " Completed "++show n++" test(s)"
y = if i then "." else " without failure."
z | x > 0 = " But "++show x++" did not meet ==> condition."
| otherwise = ""
return (ok, s ++ y ++ z)
check i n x ok (Result Nothing _ : rs) = do
progressReport i n x
check i (n+1) (x+1) ok rs
check i n x f (Result (Just True) _ : rs) = do
progressReport i n x
check i (n+1) x f rs
check i n x f (Result (Just False) args : rs) = do
let s = " Failed test no. "++show (n+1)++". Test values follow."
s' = s ++ ": " ++ concat (intersperse ", " args)
if i then
check i (n+1) x False rs
else
return (False, s')
progressReport :: Bool -> Int -> Int -> IO ()
progressReport _ _ _ = return ()
|