1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
|
;;;; TYPEP und Verwandtes
;;;; Michael Stoll, 21. 10. 1988
;;;; Bruno Haible, 10.6.1989
;;;; Sam Steingold 2000-2005
;;; Datenstrukturen für TYPEP:
;;; - Ein Type-Specifier-Symbol hat auf seiner Propertyliste unter dem
;;; Indikator SYS::TYPE-SYMBOL eine Funktion von einem Argument, die
;;; testet, ob ein Objekt vom richtigen Typ ist.
;;; - Ein Symbol, das eine Type-Specifier-Liste beginnen kann, hat auf seiner
;;; Propertyliste unter dem Indikator SYS::TYPE-LIST eine Funktion von
;;; einem Argument für das zu testende Objekt und zusätzlichen Argumenten
;;; für die Listenelemente.
;;; - Ein Symbol, das als Typmacro definiert wurde, hat auf seiner Property-
;;; liste unter dem Indikator SYSTEM::DEFTYPE-EXPANDER den zugehörigen
;;; Expander: eine Funktion, die den zu expandierenden Type-Specifier (eine
;;; mindestens einelementige Liste) als Argument bekommt.
(in-package "EXT")
(export '(type-expand))
(in-package "SYSTEM")
; vorläufig, solange bis clos.lisp geladen wird:
(eval-when (eval)
(predefun clos::built-in-class-p (object) (declare (ignore object)) nil))
(unless (fboundp 'clos::class-name)
(defun clos::class-name (c) (declare (ignore c)) nil)
)
(defun typespec-error (fun type)
(error-of-type 'error
(TEXT "~S: invalid type specification ~S")
fun type
) )
;; ============================================================================
;; return the CLOS class named by TYPESPEC or NIL
(defun clos-class (typespec)
(let ((cc (get typespec 'CLOS::CLOSCLASS)))
(when (and cc (clos::defined-class-p cc) (eq (clos:class-name cc) typespec))
cc)))
;;; TYPEP, CLTL S. 72, S. 42-51
(defun typep (x y &optional env &aux f) ; x = Objekt, y = Typ
(declare (ignore env))
(setq y (expand-deftype y))
(cond
((symbolp y)
(cond ((setq f (get y 'TYPE-SYMBOL)) (funcall f x))
((setq f (get y 'TYPE-LIST)) (funcall f x))
((setq f (get y 'DEFSTRUCT-DESCRIPTION)) (ds-typep x y f))
((setq f (clos-class y))
; It's not worth handling structure classes specially here.
(clos::typep-class x f))
(t (typespec-error 'typep y))
) )
((and (consp y) (symbolp (first y)))
(cond
((and (eq (first y) 'SATISFIES) (eql (length y) 2))
(unless (symbolp (second y))
(error-of-type 'error
(TEXT "~S: argument to SATISFIES must be a symbol: ~S")
'typep (second y)
) )
(if (funcall (symbol-function (second y)) x) t nil)
)
((eq (first y) 'MEMBER)
(if (member x (rest y)) t nil)
)
((and (eq (first y) 'EQL) (eql (length y) 2))
(eql x (second y))
)
((and (eq (first y) 'NOT) (eql (length y) 2))
(not (typep x (second y)))
)
((eq (first y) 'AND)
(dolist (type (rest y) t)
(unless (typep x type) (return nil))
) )
((eq (first y) 'OR)
(dolist (type (rest y) nil)
(when (typep x type) (return t))
) )
((setq f (get (first y) 'TYPE-LIST)) (apply f x (rest y)))
(t (typespec-error 'typep y))
) )
((clos::defined-class-p y) (clos::typep-class x y))
((clos::eql-specializer-p y) (eql x (clos::eql-specializer-singleton y)))
((encodingp y) (charset-typep x y))
(t (typespec-error 'typep y))
) )
;; ----------------------------------------------------------------------------
;; UPGRADED-ARRAY-ELEMENT-TYPE is a lattice homomorphism, see
;; ANSI CL 15.1.2.1.
(defun upgraded-array-element-type (type &optional environment)
(declare (ignore environment))
;; see array.d
(case type
((BIT) 'BIT)
((CHARACTER) 'CHARACTER)
((T) 'T)
((NIL) 'NIL)
(t (if (subtypep type 'NIL)
'NIL
(multiple-value-bind (low high) (sys::subtype-integer type)
; Es gilt (or (null low) (subtypep type `(INTEGER ,low ,high)))
(if (and (integerp low) (not (minusp low)) (integerp high))
(let ((l (integer-length high)))
; Es gilt (subtypep type `(UNSIGNED-BYTE ,l))
(cond ((<= l 1) 'BIT)
((<= l 2) '(UNSIGNED-BYTE 2))
((<= l 4) '(UNSIGNED-BYTE 4))
((<= l 8) '(UNSIGNED-BYTE 8))
((<= l 16) '(UNSIGNED-BYTE 16))
((<= l 32) '(UNSIGNED-BYTE 32))
(t 'T)))
(if (subtypep type 'CHARACTER)
'CHARACTER
'T)))))))
;; ----------------------------------------------------------------------------
;; UPGRADED-COMPLEX-PART-TYPE is a lattice homomorphism, see
;; HyperSpec/Body/fun_complex.html and HyperSpec/Body/syscla_complex.html,
;; and an idempotent. Therefore
;; (subtypep (upgraded-complex-part-type T1) (upgraded-complex-part-type T2))
;; is equivalent to
;; (subtypep T1 (upgraded-complex-part-type T2))
;; (Proof: Let U T be an abbreviation for (upgraded-complex-part-type T).
;; If U T1 <= U T2, then T1 <= U T1 <= U T2.
;; If T1 <= U T2, then by homomorphism U T1 <= U U T2 = U T2.)
;;
;; For _any_ CL implementation, you could define
;; (defun upgraded-complex-part-type (type) 'REAL)
;; Likewise for _any_ CL implementation, you could define
;; (defun upgraded-complex-part-type (type) type)
;; or - again for _any_ CL implementation:
;; (defun upgraded-complex-part-type (type)
;; (cond ((subtypep type 'NIL) 'NIL)
;; ((subtypep type 'SHORT-FLOAT) 'SHORT-FLOAT)
;; ((subtypep type 'SINGLE-FLOAT) 'SINGLE-FLOAT)
;; ((subtypep type 'DOUBLE-FLOAT) 'DOUBLE-FLOAT)
;; ((subtypep type 'LONG-FLOAT) 'LONG-FLOAT)
;; ((subtypep type 'RATIONAL) 'RATIONAL)
;; ((subtypep type 'REAL) 'REAL)
;; (t (error ...))))
;; The reason is that a complex number is immutable: no setters for the
;; realpart and imagpart exist.
;;
;; We choose the second implementation because it allows the most precise
;; type inference.
(defun upgraded-complex-part-type (type &optional environment)
(declare (ignore environment))
(if (subtypep type 'REAL)
type
(error-of-type 'error
(TEXT "~S: type ~S is not a subtype of ~S")
'upgraded-complex-part-type type 'real)))
;; ----------------------------------------------------------------------------
;; Macros for defining the various built-in "atomic type specifier"s and
;; "compound type specifier"s. The following macros add information for both
;; the TYPEP function above and the c-TYPEP in the compiler.
; Alist symbol -> funname, used by the compiler.
(defparameter c-typep-alist1 '())
; Alist symbol -> lambdabody, used by the compiler.
(defparameter c-typep-alist2 '())
; Alist symbol -> expander function, used by the compiler.
(defparameter c-typep-alist3 '())
; (def-atomic-type symbol function-name)
; defines an atomic type. The function-name designates a function taking one
; argument and returning a generalized boolean value. It can be either a
; symbol or a lambda expression.
(defmacro def-atomic-type (symbol funname)
(let ((lambdap (and (consp funname) (eq (car funname) 'LAMBDA))))
`(PROGN
(SETF (GET ',symbol 'TYPE-SYMBOL)
,(if lambdap
`(FUNCTION ,(concat-pnames "TYPE-SYMBOL-" symbol) ,funname)
`(FUNCTION ,funname)
)
)
,(if lambdap
`(SETQ C-TYPEP-ALIST2
(NCONC C-TYPEP-ALIST2 (LIST (CONS ',symbol ',(cdr funname))))
)
`(SETQ C-TYPEP-ALIST1
(NCONC C-TYPEP-ALIST1 (LIST (CONS ',symbol ',funname)))
)
)
',symbol
)
) )
; (def-compound-type symbol lambda-list (x) check-form typep-form c-typep-form)
; defines a compound type. The lambda-list is of the form (&optional ...)
; where the arguments come from the CDR of the type specifier.
; For typep-form, x is an object.
; For c-typep-form, x is a multiply evaluatable form (actually a gensym).
; check-form is a form performing error checking, may call `error'.
; typep-form should return a generalized boolean value.
; c-typep-form should produce a form returning a generalized boolean value.
(defmacro def-compound-type (symbol lambdalist (var) check-form typep-form c-typep-form)
`(PROGN
(SETF (GET ',symbol 'TYPE-LIST)
(FUNCTION ,(concat-pnames "TYPE-LIST-" symbol)
(LAMBDA (,var ,@lambdalist)
,@(if check-form
`((MACROLET ((ERROR (&REST ERROR-ARGS)
(LIST* 'ERROR-OF-TYPE ''ERROR ERROR-ARGS)
))
,check-form
))
)
,typep-form
) ) )
(SETQ C-TYPEP-ALIST3
(NCONC C-TYPEP-ALIST3
(LIST (CONS ',symbol
#'(LAMBDA (,var ,@lambdalist &REST ILLEGAL-ARGS)
(DECLARE (IGNORE ILLEGAL-ARGS))
,@(if check-form
`((MACROLET ((ERROR (&REST ERROR-ARGS)
(LIST 'PROGN
(LIST* 'C-WARN ERROR-ARGS)
'(THROW 'C-TYPEP NIL)
)) )
,check-form
))
)
,c-typep-form
)
) ) ) )
',symbol
)
)
; CLtL1 p. 43
(def-atomic-type ARRAY arrayp)
(def-atomic-type ATOM atom)
(def-atomic-type BASE-CHAR
#+BASE-CHAR=CHARACTER
characterp
#-BASE-CHAR=CHARACTER
(lambda (x) (and (characterp x) (base-char-p x)))
)
(def-atomic-type BASE-STRING
(lambda (x)
(and (stringp x)
(eq (array-element-type x)
#+BASE-CHAR=CHARACTER 'CHARACTER #-BASE-CHAR=CHARACTER 'BASE-CHAR
) ) ) )
(def-atomic-type BIGNUM
(lambda (x) (and (integerp x) (not (fixnump x))))
)
(def-atomic-type BIT
(lambda (x) (or (eql x 0) (eql x 1)))
)
(def-atomic-type BIT-VECTOR bit-vector-p)
(def-atomic-type BOOLEAN
(lambda (x) (or (eq x 'nil) (eq x 't)))
)
(def-atomic-type CHARACTER characterp)
(def-atomic-type COMPILED-FUNCTION compiled-function-p)
(def-atomic-type COMPLEX complexp)
(def-atomic-type CONS consp)
(def-atomic-type DOUBLE-FLOAT double-float-p)
(def-atomic-type ENCODING encodingp)
(def-atomic-type EXTENDED-CHAR
#+BASE-CHAR=CHARACTER
(lambda (x) (declare (ignore x)) nil)
#-BASE-CHAR=CHARACTER
(lambda (x) (and (characterp x) (not (base-char-p x))))
)
(def-atomic-type FIXNUM fixnump)
(def-atomic-type FLOAT floatp)
(def-atomic-type FUNCTION functionp)
(def-atomic-type HASH-TABLE hash-table-p)
(def-atomic-type INTEGER integerp)
(def-atomic-type KEYWORD keywordp)
(def-atomic-type LIST listp)
#+LOGICAL-PATHNAMES
(def-atomic-type LOGICAL-PATHNAME logical-pathname-p)
(def-atomic-type LONG-FLOAT long-float-p)
(def-atomic-type NIL
(lambda (x) (declare (ignore x)) nil)
)
(def-atomic-type NULL null)
(def-atomic-type NUMBER numberp)
(def-atomic-type PACKAGE packagep)
(def-atomic-type PATHNAME pathnamep)
(def-atomic-type RANDOM-STATE random-state-p)
(def-atomic-type RATIO
(lambda (x) (and (rationalp x) (not (integerp x))))
)
(def-atomic-type RATIONAL rationalp)
(def-atomic-type READTABLE readtablep)
(def-atomic-type REAL realp)
(def-atomic-type SEQUENCE sequencep)
(def-atomic-type SHORT-FLOAT short-float-p)
(def-atomic-type SIMPLE-ARRAY simple-array-p)
(def-atomic-type SIMPLE-BASE-STRING
(lambda (x)
(and (simple-string-p x)
(eq (array-element-type x)
#+BASE-CHAR=CHARACTER 'CHARACTER #-BASE-CHAR=CHARACTER 'BASE-CHAR
) ) ) )
(def-atomic-type SIMPLE-BIT-VECTOR simple-bit-vector-p)
(def-atomic-type SIMPLE-STRING simple-string-p)
(def-atomic-type SIMPLE-VECTOR simple-vector-p)
(def-atomic-type SINGLE-FLOAT single-float-p)
(defun %standard-char-p (x) (and (characterp x) (standard-char-p x))) ; ABI
(def-atomic-type STANDARD-CHAR %standard-char-p)
(def-atomic-type CLOS:STANDARD-OBJECT clos::std-instance-p)
(def-atomic-type STREAM streamp)
(def-atomic-type FILE-STREAM file-stream-p)
(def-atomic-type SYNONYM-STREAM synonym-stream-p)
(def-atomic-type BROADCAST-STREAM broadcast-stream-p)
(def-atomic-type CONCATENATED-STREAM concatenated-stream-p)
(def-atomic-type TWO-WAY-STREAM two-way-stream-p)
(def-atomic-type ECHO-STREAM echo-stream-p)
(def-atomic-type STRING-STREAM string-stream-p)
(def-atomic-type STRING stringp)
(def-atomic-type STRING-CHAR characterp)
(def-atomic-type CLOS:STRUCTURE-OBJECT clos::structure-object-p)
(def-atomic-type SYMBOL symbolp)
(def-atomic-type T (lambda (x) (declare (ignore x)) t))
;; foreign1.lisp is loaded after this file,
;; so these symbols are not external yet
#+ffi
(def-atomic-type ffi::foreign-function
(lambda (x) (eq 'ffi::foreign-function (type-of x))))
#+ffi
(def-atomic-type ffi::foreign-variable
(lambda (x) (eq 'ffi::foreign-variable (type-of x))))
#+ffi
(def-atomic-type ffi::foreign-address
(lambda (x) (eq 'ffi::foreign-address (type-of x))))
;; see lispbibl.d (#define FOREIGN) and predtype.d (TYPE-OF):
#+(or unix ffi affi win32)
(def-atomic-type foreign-pointer
(lambda (x) (eq 'foreign-pointer (type-of x))))
(def-atomic-type VECTOR vectorp)
(def-atomic-type PLIST
(lambda (x) (multiple-value-bind (length tail) (list-length-dotted x)
(and (null tail) (evenp length)))))
(defmacro ensure-dim (type dim)
;; make sure DIM is a valid dimension
`(unless (or (eq ,dim '*) (typep ,dim `(INTEGER 0 (,ARRAY-DIMENSION-LIMIT))))
(error (TEXT "~S: dimension ~S is invalid") ',type ,dim)))
(defmacro ensure-rank (type rank)
;; make sure RANK is a valid rank
`(unless (typep ,rank `(INTEGER 0 (,ARRAY-RANK-LIMIT)))
(error (TEXT "~S: rank ~S is invalid") ',type ,rank)))
; CLtL1 p. 46-50
(defun c-typep-array (tester el-type dims x)
`(AND (,tester ,x)
,@(if (eq el-type '*)
'()
`((EQUAL (ARRAY-ELEMENT-TYPE ,x) ',(upgraded-array-element-type el-type)))
)
,@(if (eq dims '*)
'()
(if (numberp dims)
`((EQL ,dims (ARRAY-RANK ,x)))
`((EQL ,(length dims) (ARRAY-RANK ,x))
,@(let ((i 0))
(mapcap #'(lambda (dim)
(prog1
(if (eq dim '*)
'()
`((EQL ',dim (ARRAY-DIMENSION ,x ,i)))
)
(incf i)
) )
dims
) )
)
) )
)
)
(defun c-typep-vector (tester size x)
`(AND (,tester ,x)
,@(if (eq size '*)
'()
`((EQL ',size (ARRAY-DIMENSION ,x 0)))
)
)
)
(defun typep-number-test (x low high test type)
(and (funcall test x)
(cond ((eq low '*))
((funcall test low) (<= low x))
((and (consp low) (null (rest low)) (funcall test (first low)))
(< (first low) x)
)
(t (error-of-type 'error
#1=(TEXT "~S: argument to ~S must be *, ~S or a list of ~S: ~S")
'typep type type type low
) ) )
(cond ((eq high '*))
((funcall test high) (>= high x))
((and (consp high) (null (rest high)) (funcall test (first high)))
(> (first high) x)
)
(t (error-of-type 'error
#1# 'typep type type type high
) ) ) ) )
(defun c-typep-number (caller tester low high x)
`(AND (,tester ,x)
,@(cond ((eq low '*) '())
((funcall tester low) `((<= ,low ,x)))
((and (consp low) (null (rest low)) (funcall tester (first low)))
`((< ,(first low) ,x))
)
(t (c-warn #1=(TEXT "~S: argument to ~S must be *, ~S or a list of ~S: ~S")
'typep caller caller caller low
)
(throw 'c-TYPEP nil)
) )
,@(cond ((eq high '*) '())
((funcall tester high) `((>= ,high ,x)))
((and (consp high) (null (rest high)) (funcall tester (first high)))
`((> ,(first high) ,x))
)
(t (c-warn #1# 'typep caller caller caller high)
(throw 'c-TYPEP nil)
) )
)
)
(def-compound-type ARRAY (&optional (el-type '*) (dims '*)) (x)
(unless (eq dims '*)
(if (numberp dims)
(ensure-rank ARRAY dims)
(dolist (dim dims) (ensure-dim ARRAY dim))))
(and (arrayp x)
(or (eq el-type '*)
(equal (array-element-type x) (upgraded-array-element-type el-type))
)
(or (eq dims '*)
(if (numberp dims)
(eql dims (array-rank x))
(and (eql (length dims) (array-rank x))
(every #'(lambda (a b) (or (eq a '*) (eql a b)))
dims (array-dimensions x)
) ) ) ) )
(c-typep-array 'ARRAYP el-type dims x)
)
(def-compound-type SIMPLE-ARRAY (&optional (el-type '*) (dims '*)) (x)
(unless (eq dims '*)
(if (numberp dims)
(ensure-rank SIMPLE-ARRAY dims)
(dolist (dim dims) (ensure-dim SIMPLE-ARRAY dim))))
(and (simple-array-p x)
(or (eq el-type '*)
(equal (array-element-type x) (upgraded-array-element-type el-type))
)
(or (eq dims '*)
(if (numberp dims)
(eql dims (array-rank x))
(and (eql (length dims) (array-rank x))
(every #'(lambda (a b) (or (eq a '*) (eql a b)))
dims (array-dimensions x)
) ) ) ) )
(c-typep-array 'SIMPLE-ARRAY-P el-type dims x)
)
(def-compound-type VECTOR (&optional (el-type '*) (size '*)) (x)
(ensure-dim VECTOR size)
(and (vectorp x)
(or (eq el-type '*)
(equal (array-element-type x) (upgraded-array-element-type el-type))
)
(or (eq size '*) (eql (array-dimension x 0) size))
)
`(AND (VECTORP ,x)
,@(if (eq el-type '*)
'()
`((EQUAL (ARRAY-ELEMENT-TYPE ,x) ',(upgraded-array-element-type el-type)))
)
,@(if (eq size '*)
'()
`((EQL (ARRAY-DIMENSION ,x 0) ',size))
)
)
)
(def-compound-type SIMPLE-VECTOR (&optional (size '*)) (x)
(ensure-dim SIMLPE-VECTOR size)
(and (simple-vector-p x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'SIMPLE-VECTOR-P size x)
)
(def-compound-type COMPLEX (&optional (rtype '*) (itype rtype)) (x)
nil
(and (complexp x)
(or (eq rtype '*)
(typep (realpart x) (upgraded-complex-part-type rtype)))
(or (eq itype '*)
(typep (imagpart x) (upgraded-complex-part-type itype))))
`(AND (COMPLEXP ,x)
,@(if (eq rtype '*)
'()
`((TYPEP (REALPART ,x) ',(upgraded-complex-part-type rtype))))
,@(if (eq itype '*)
'()
`((TYPEP (IMAGPART ,x) ',(upgraded-complex-part-type itype))))))
(def-compound-type INTEGER (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'integerp 'INTEGER)
(c-typep-number 'INTEGER 'INTEGERP low high x)
)
(def-compound-type MOD (n) (x)
(unless (integerp n)
(error (TEXT "~S: argument to MOD must be an integer: ~S")
'typep n
) )
(and (integerp x) (<= 0 x) (< x n))
`(AND (INTEGERP ,x) (NOT (MINUSP ,x)) (< ,x ,n))
)
(def-compound-type SIGNED-BYTE (&optional (n '*)) (x)
(unless (or (eq n '*) (integerp n))
(error (TEXT "~S: argument to SIGNED-BYTE must be an integer or * : ~S")
'typep n
) )
(and (integerp x) (or (eq n '*) (< (integer-length x) n)))
`(AND (INTEGERP ,x)
,@(if (eq n '*) '() `((< (INTEGER-LENGTH ,x) ,n)))
)
)
(def-compound-type UNSIGNED-BYTE (&optional (n '*)) (x)
(unless (or (eq n '*) (integerp n))
(error (TEXT "~S: argument to UNSIGNED-BYTE must be an integer or * : ~S")
'typep n
) )
(and (integerp x)
(not (minusp x))
(or (eq n '*) (<= (integer-length x) n))
)
`(AND (INTEGERP ,x) (NOT (MINUSP ,x))
,@(if (eq n '*) '() `((<= (INTEGER-LENGTH ,x) ,n)))
)
)
(def-compound-type REAL (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'realp 'REAL)
(c-typep-number 'REAL 'REALP low high x)
)
(def-compound-type RATIONAL (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'rationalp 'RATIONAL)
(c-typep-number 'RATIONAL 'RATIONALP low high x)
)
(def-compound-type FLOAT (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'floatp 'FLOAT)
(c-typep-number 'FLOAT 'FLOATP low high x)
)
(def-compound-type SHORT-FLOAT (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'short-float-p 'SHORT-FLOAT)
(c-typep-number 'SHORT-FLOAT 'SHORT-FLOAT-P low high x)
)
(def-compound-type SINGLE-FLOAT (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'single-float-p 'SINGLE-FLOAT)
(c-typep-number 'SINGLE-FLOAT 'SINGLE-FLOAT-P low high x)
)
(def-compound-type DOUBLE-FLOAT (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'double-float-p 'DOUBLE-FLOAT)
(c-typep-number 'DOUBLE-FLOAT 'DOUBLE-FLOAT-P low high x)
)
(def-compound-type LONG-FLOAT (&optional (low '*) (high '*)) (x)
nil
(typep-number-test x low high #'long-float-p 'LONG-FLOAT)
(c-typep-number 'LONG-FLOAT 'LONG-FLOAT-P low high x)
)
(def-compound-type STRING (&optional (size '*)) (x)
(ensure-dim STRING size)
(and (stringp x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'STRINGP size x)
)
(def-compound-type SIMPLE-STRING (&optional (size '*)) (x)
(ensure-dim SIMPLE-STRING size)
(and (simple-string-p x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'SIMPLE-STRING-P size x)
)
(def-compound-type BASE-STRING (&optional (size '*)) (x)
(ensure-dim BASE-STRING size)
(and (stringp x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'STRINGP size x)
)
(def-compound-type SIMPLE-BASE-STRING (&optional (size '*)) (x)
(ensure-dim SIMPLE-BASE-STRING size)
(and (simple-string-p x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'SIMPLE-STRING-P size x)
)
(def-compound-type BIT-VECTOR (&optional (size '*)) (x)
(ensure-dim BIT-VECTOR size)
(and (bit-vector-p x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'BIT-VECTOR-P size x)
)
(def-compound-type SIMPLE-BIT-VECTOR (&optional (size '*)) (x)
(ensure-dim SIMPLE-BIT-VECTOR size)
(and (simple-bit-vector-p x)
(or (eq size '*) (eql size (array-dimension x 0)))
)
(c-typep-vector 'SIMPLE-BIT-VECTOR-P size x)
)
(def-compound-type CONS (&optional (car-type '*) (cdr-type '*)) (x)
nil
(and (consp x)
(or (eq car-type '*) (typep (car x) car-type))
(or (eq cdr-type '*) (typep (cdr x) cdr-type))
)
`(AND (CONSP ,x)
,@(if (eq car-type '*) '() `((TYPEP (CAR ,x) ',car-type)))
,@(if (eq cdr-type '*) '() `((TYPEP (CDR ,x) ',cdr-type)))
)
)
(fmakunbound 'def-compound-type)
;; ----------------------------------------------------------------------------
; Typtest ohne Gefahr einer Fehlermeldung. Für SIGNAL und HANDLER-BIND.
(defun safe-typep (x y &optional env)
(let ((*error-handler*
#'(lambda (&rest error-args)
(declare (ignore error-args))
(return-from safe-typep (values nil nil))
)) )
(values (typep x y env) t)
) )
; Umwandlung eines "type for declaration" in einen "type for discrimination".
(defun type-for-discrimination (y &optional (notp nil) &aux f)
(cond ((symbolp y)
(cond ((get y 'TYPE-SYMBOL) y)
((get y 'TYPE-LIST) y)
((setq f (get y 'DEFTYPE-EXPANDER))
(let* ((z (funcall f (list y)))
(zx (type-for-discrimination z notp)))
(if (eql zx z) y zx)
))
(t y)
) )
((and (consp y) (symbolp (first y)))
(case (first y)
((SATISFIES MEMBER EQL) y)
(NOT
(let* ((z (second y))
(zx (type-for-discrimination z (not notp))))
(if (eql zx z) y `(NOT ,zx))
))
((AND OR COMPLEX VALUES)
(let* ((z (rest y))
(zx (mapcar #'(lambda (x) (type-for-discrimination x notp)) z)))
(if (every #'eql z zx) y (cons (first y) zx))
))
(FUNCTION
;; (FUNCTION arg-types res-type) is somewhere between
;; NIL and FUNCTION, but undecidable.
(if notp 'NIL 'FUNCTION)
)
(t (cond ((get (first y) 'TYPE-LIST) y)
((setq f (get (first y) 'DEFTYPE-EXPANDER))
(let* ((z (funcall f y))
(zx (type-for-discrimination z notp)))
(if (eql zx z) y zx)
))
(t y)
) ) ) )
(t y)
) )
; Testet eine Liste von Werten auf Erfüllen eines Type-Specifiers. Für THE.
(defun %the (values type) ; ABI
(macrolet ((near-typep (objform typform)
;; near-typep ist wie typep, nur dass das Objekt auch ein
;; Read-Label sein darf. Das tritt z.B. auf bei
;; (read-from-string "#1=#S(FOO :X #1#)")
;; im Konstruktor MAKE-FOO. Die Implementation ist aber
;; nicht gezwungen, bei fehlerhaftem THE zwingend einen
;; Fehler zu melden, darum ist ein lascherer Typcheck hier
;; erlaubt.
(let ((g (gensym)))
`(let ((,g ,objform))
(or (typep ,g ,typform) (eq (type-of ,g) 'READ-LABEL))))))
(if (and (consp type) (eq (car type) 'VALUES))
;; The VALUES type specifier is ill-defined in ANSI CL.
;;
;; There are two possibilities to define a VALUES type specifier in a
;; sane way:
;; - (EXACT-VALUES type1 ... [&optional ...]) describes the exact shape
;; of the values list, as received by MULTIPLE-VALUE-LIST.
;; For example, (EXACT-VALUES SYMBOL) is matched by (values 'a) but not
;; by (values 'a 'b) or (values).
;; - (ASSIGNABLE-VALUES type1 ... [&optional ...]) describes the values
;; as received by a set of variables through MULTIPLE-VALUE-BIND or
;; MULTIPLE-VALUE-SETQ. For example, (ASSIGNABLE-VALUES SYMBOL) is
;; defined by whether
;; (MULTIPLE-VALUE-BIND (var1) values (DECLARE (TYPE SYMBOL var1)) ...)
;; is valid or not; therefore (ASSIGNABLE-VALUES SYMBOL) is matched by
;; (values 'a) and (values 'a 'b) and (values).
;; Note that &OPTIONAL is actually redundant here:
;; (ASSIGNABLE-VALUES type1 ... &optional otype1 ...)
;; is equivalent to
;; (ASSIGNABLE-VALUES type1 ... (OR NULL otype1) ...)
;; HyperSpec/Body/typspe_values.html indicates that VALUES means
;; EXACT-VALUES; however, HyperSpec/Body/speope_the.html indicates that
;; VALUES means ASSIGNABLE-VALUES.
;;
;; SBCL interprets the VALUES type specifier to mean EXACT-VALUES when
;; it contains &OPTIONAL or &REST, but ASSIGNABLE-VALUES when it has
;; only a tuple of type specifiers. This is utter nonsense, in particular
;; because it makes (VALUES type1 ... typek &OPTIONAL)
;; different from (VALUES type1 ... typek).
;;
;; Here we use the ASSIGNABLE-VALUES interpretation.
;; In SUBTYPEP we just punt and don't assume any interpretation.
(let ((vals values) (types (cdr type)))
;; required:
(loop
(when (or (atom types) (atom vals)) (return-from %the t))
(when (memq (car types) lambda-list-keywords) (return))
(unless (near-typep (pop vals) (pop types))
(return-from %the nil)))
;; &optional:
(when (and (consp types) (eq (car types) '&optional))
(setq types (cdr types))
(loop
(when (or (atom types) (atom vals)) (return-from %the t))
(when (memq (car types) lambda-list-keywords) (return))
(unless (near-typep (pop vals) (pop types))
(return-from %the nil))))
;; &rest &key:
(case (car types)
(&rest
(setq types (cdr types))
(when (atom types) (typespec-error 'the type))
(unless (near-typep (pop vals) (pop types))
(return-from %the nil)))
(&key)
(t (typespec-error 'the type)))
(if (eq (car types) '&key)
(progn
(setq types (cdr types))
(when (oddp (length vals)) (return-from %the nil))
(let ((keywords nil))
(loop
(when (or (atom types) (atom vals)) (return-from %the t))
(when (memq (car types) lambda-list-keywords) (return))
(let ((item (pop types)))
(unless (and (listp item) (eql (length item) 2)
(symbolp (first item)))
(typespec-error 'the type))
(let ((kw (symbol-to-keyword (first item))))
(unless (near-typep (getf vals kw) (second item))
(return-from %the nil))
(push kw keywords))))
(if (and (consp types) (eq (car types) '&allow-other-keys))
(setq types (cdr types))
(unless (getf vals ':allow-other-keys)
(do ((L vals (cddr L)))
((atom L))
(unless (memq (car L) keywords)
(return-from %the nil)))))))
(when (consp types) (typespec-error 'the type)))
t)
(near-typep (if (consp values) (car values) nil) type))))
;;; ===========================================================================
;; SUBTYPEP
(load "subtypep")
;; Returns the number of bytes that are needed to represent #\Null in a
;; given encoding.
(defun encoding-zeroes (encoding)
#+UNICODE
;; this should use min_bytes_per_char for cache, not the hash table
(let ((name (ext:encoding-charset encoding))
(table #.(make-hash-table :key-type '(or string symbol) :value-type 'fixnum
:test 'stablehash-equal :warn-if-needs-rehash-after-gc t
:initial-contents '(("UTF-7" . 1))))
(tester #.(make-string 2 :initial-element (code-char 0))))
(or (gethash name table)
(setf (gethash name table)
(- (length (ext:convert-string-to-bytes tester encoding))
(length (ext:convert-string-to-bytes tester encoding
:end 1))))))
#-UNICODE 1)
;; Determines two values low,high such that
;; (subtypep type `(INTEGER ,low ,high))
;; holds and low is as large as possible and high is as small as possible.
;; low = * means -infinity, high = * means infinity.
;; When (subtypep type 'INTEGER) is false, the values NIL,NIL are returned.
;; We need this function only for MAKE-ARRAY, UPGRADED-ARRAY-ELEMENT-TYPE and
;; OPEN and can therefore w.l.o.g. replace
;; type with `(OR ,type (MEMBER 0))
#| ;; The original implementation calls canonicalize-type and then applies
;; a particular SUBTYPE variant:
(defun subtype-integer (type)
(macrolet ((yes () '(return-from subtype-integer (values low high)))
(no () '(return-from subtype-integer nil))
(unknown () '(return-from subtype-integer nil)))
(setq type (canonicalize-type type))
(if (consp type)
(case (first type)
(MEMBER ; (MEMBER &rest objects)
;; All elements must be of type INTEGER.
(let ((low 0) (high 0)) ; wlog!
(dolist (x (rest type) (yes))
(unless (typep x 'INTEGER) (return (no)))
(setq low (min low x) high (max high x)))))
(OR ; (OR type*)
;; Every type must be subtype of INTEGER.
(let ((low 0) (high 0)) ; wlog!
(dolist (type1 (rest type) (yes))
(multiple-value-bind (low1 high1) (subtype-integer type1)
(unless low1 (return (no)))
(setq low (if (or (eq low '*) (eq low1 '*)) '* (min low low1))
high (if (or (eq high '*) (eq high1 '*))
'* (max high high1)))))))
(AND ; (AND type*)
;; If one of the types is subtype of INTEGER, then yes,
;; otherwise unknown.
(let ((low nil) (high nil))
(dolist (type1 (rest type))
(multiple-value-bind (low1 high1) (subtype-integer type1)
(when low1
(if low
(setq low (if (eq low '*) low1 (if (eq low1 '*) low (max low low1)))
high (if (eq high '*) high1 (if (eq high1 '*) high (min high high1))))
(setq low low1 high high1)))))
(if low
(progn
(when (and (numberp low) (numberp high) (not (<= low high)))
(setq low 0 high 0) ; type equivalent to NIL)
(yes))
(unknown)))))
(setq type (list type)))
(if (eq (first type) 'INTEGER)
(let ((low (if (rest type) (second type) '*))
(high (if (cddr type) (third type) '*)))
(when (consp low)
(setq low (first low))
(when (numberp low) (incf low)))
(when (consp high)
(setq high (first high))
(when (numberp high) (decf high)))
(when (and (numberp low) (numberp high) (not (<= low high))) ; type leer?
(setq low 0 high 0))
(yes))
(if (and (eq (first type) 'INTERVALS) (eq (second type) 'INTEGER))
(let ((low (third type))
(high (car (last type))))
(when (consp low)
(setq low (first low))
(when (numberp low) (incf low)))
(when (consp high)
(setq high (first high))
(when (numberp high) (decf high)))
(yes))
(unknown)))))
|# ;; This implementation inlines the (tail-recursive) canonicalize-type
;; function. Its advantage is that it doesn't cons as much.
;; (For example, (subtype-integer '(UNSIGNED-BYTE 8)) doesn't cons.)
(defun subtype-integer (type)
(macrolet ((yes () '(return-from subtype-integer (values low high)))
(no () '(return-from subtype-integer nil))
(unknown () '(return-from subtype-integer nil)))
(setq type (expand-deftype type))
(cond ((symbolp type)
(case type
(BIT (let ((low 0) (high 1)) (yes)))
(FIXNUM
(let ((low '#,most-negative-fixnum)
(high '#,most-positive-fixnum))
(yes)))
((INTEGER BIGNUM SIGNED-BYTE)
(let ((low '*) (high '*)) (yes)))
(UNSIGNED-BYTE
(let ((low 0) (high '*)) (yes)))
((NIL)
(let ((low 0) (high 0)) (yes))) ; wlog!
(t (no))))
((and (consp type) (symbolp (first type)))
(unless (and (list-length type) (null (cdr (last type))))
(typespec-error 'subtypep type))
(case (first type)
(MEMBER ; (MEMBER &rest objects)
;; All elements must be of type INTEGER.
(let ((low 0) (high 0)) ; wlog!
(dolist (x (rest type) (yes))
(unless (typep x 'INTEGER) (return (no)))
(setq low (min low x) high (max high x)))))
(EQL ; (EQL object)
(let ((x (second type)))
(if (typep x 'INTEGER)
(let ((low (min 0 x)) (high (max 0 x))) (yes))
(no))))
(OR ; (OR type*)
;; Every type must be subtype of INTEGER.
(let ((low 0) (high 0)) ; wlog!
(dolist (type1 (rest type) (yes))
(multiple-value-bind (low1 high1) (subtype-integer type1)
(unless low1 (return (no)))
(setq low (if (or (eq low '*) (eq low1 '*))
'* (min low low1))
high (if (or (eq high '*) (eq high1 '*))
'* (max high high1)))))))
(AND ; (AND type*)
;; If one of the types is subtype of INTEGER, then yes,
;; otherwise unknown.
(let ((low nil) (high nil))
(dolist (type1 (rest type))
(multiple-value-bind (low1 high1) (subtype-integer type1)
(when low1
(if low
(setq low (if (eq low '*) low1
(if (eq low1 '*) low
(max low low1)))
high (if (eq high '*) high1
(if (eq high1 '*) high
(min high high1))))
(setq low low1
high high1)))))
(if low
(progn
(when (and (numberp low) (numberp high)
(not (<= low high)))
(setq low 0 high 0)) ; type equivalent to NIL
(yes))
(unknown))))
(INTEGER
(let ((low (if (rest type) (second type) '*))
(high (if (cddr type) (third type) '*)))
(when (consp low)
(setq low (first low))
(when (numberp low) (incf low)))
(when (consp high)
(setq high (first high))
(when (numberp high) (decf high)))
(when (and (numberp low) (numberp high) (not (<= low high)))
(setq low 0 high 0)) ; type equivalent to NIL
(yes)))
(INTERVALS
(if (eq (second type) 'INTEGER)
(let ((low (third type))
(high (car (last type))))
(when (consp low)
(setq low (first low))
(when (numberp low) (incf low)))
(when (consp high)
(setq high (first high))
(when (numberp high) (decf high)))
(yes))
(unknown)))
(MOD ; (MOD n)
(let ((n (second type)))
(unless (and (integerp n) (>= n 0))
(typespec-error 'subtypep type))
(if (eql n 0)
(no)
(let ((low 0) (high (1- n)))
(yes)))))
(SIGNED-BYTE ; (SIGNED-BYTE &optional s)
(let ((s (if (cdr type) (second type) '*)))
(if (eq s '*)
(let ((low '*) (high '*)) (yes))
(progn
(unless (and (integerp s) (plusp s))
(typespec-error 'subtypep type))
(let ((n (ash 1 (1- s)))) ; (ash 1 *) == (expt 2 *)
(let ((low (- n)) (high (1- n)))
(yes)))))))
(UNSIGNED-BYTE ; (UNSIGNED-BYTE &optional s)
(let ((s (if (cdr type) (second type) '*)))
(if (eq s '*)
(let ((low 0) (high '*)) (yes))
(progn
(unless (and (integerp s) (>= s 0))
(typespec-error 'subtypep type))
(let ((n (ash 1 s))) ; (ash 1 *) == (expt 2 *)
(let ((low 0) (high (1- n)))
(yes)))))))
(t (no))))
((clos::defined-class-p type)
(if (and (clos::built-in-class-p type)
(eq (get (clos:class-name type) 'CLOS::CLOSCLASS) type))
(return-from subtype-integer
(subtype-integer (clos:class-name type)))
(no)))
((clos::eql-specializer-p type)
(let ((x (clos::eql-specializer-singleton type)))
(if (typep x 'INTEGER)
(let ((low (min 0 x)) (high (max 0 x))) (yes))
(no))))
((encodingp type) (no))
(t (typespec-error 'subtypep type)))))
#| TODO: Fix subtype-integer such that this works.
Henry Baker:
(defun type-null (x)
(values (and (eq 'bit (upgraded-array-element-type `(or bit ,x)))
(not (typep 0 x))
(not (typep 1 x)))
t))
(type-null '(and symbol number))
(type-null '(and integer symbol))
(type-null '(and integer character))
|#
;; Determines a sequence kind (an atom, as defined in defseq.lisp: one of
;; LIST - stands for LIST
;; VECTOR - stands for (VECTOR T)
;; STRING - stands for (VECTOR CHARACTER)
;; 1, 2, 4, 8, 16, 32 - stands for (VECTOR (UNSIGNED-BYTE n))
;; 0 - stands for (VECTOR NIL))
;; that indicates the sequence type meant by the given type. Other possible
;; return values are
;; SEQUENCE - denoting a type whose intersection with (OR LIST VECTOR) is not
;; subtype of LIST or VECTOR, or
;; NIL - indicating a type whose intersection with (OR LIST VECTOR) is empty.
;; When the type is (OR (VECTOR eltype1) ... (VECTOR eltypeN)), the chosen
;; element type is the smallest element type that contains all of eltype1 ...
;; eltypeN.
;;
;; User-defined sequence types are not supported here.
;;
;; This implementation inlines the (tail-recursive) canonicalize-type
;; function. Its advantage is that it doesn't cons as much. Also it employs
;; some heuristics and does not have the full power of SUBTYPEP.
(defun subtype-sequence (type)
(setq type (expand-deftype type))
(cond ((symbolp type)
(case type
((LIST CONS NULL) 'LIST)
((NIL) 'NIL)
((BIT-VECTOR SIMPLE-BIT-VECTOR) '1)
((STRING SIMPLE-STRING BASE-STRING SIMPLE-BASE-STRING) 'STRING)
((VECTOR SIMPLE-VECTOR ARRAY SIMPLE-ARRAY) 'VECTOR)
((SEQUENCE) 'SEQUENCE)
(t 'NIL)))
((and (consp type) (symbolp (first type)))
(unless (and (list-length type) (null (cdr (last type))))
(typespec-error 'subtypep type))
(case (first type)
(MEMBER ; (MEMBER &rest objects)
(let ((kind 'NIL))
(dolist (x (rest type))
(setq kind (sequence-type-union kind (type-of-sequence x))))
kind))
(EQL ; (EQL object)
(unless (eql (length type) 2)
(typespec-error 'subtypep type))
(type-of-sequence (second type)))
(OR ; (OR type*)
(let ((kind 'NIL))
(dolist (x (rest type))
(setq kind (sequence-type-union kind (subtype-sequence x))))
kind))
(AND ; (AND type*)
(let ((kind 'SEQUENCE))
(dolist (x (rest type))
(setq kind (sequence-type-intersection kind (subtype-sequence x))))
kind))
((SIMPLE-BIT-VECTOR BIT-VECTOR) ; (SIMPLE-BIT-VECTOR &optional size)
(when (cddr type)
(typespec-error 'subtypep type))
'1)
((SIMPLE-STRING STRING SIMPLE-BASE-STRING BASE-STRING) ; (SIMPLE-STRING &optional size)
(when (cddr type)
(typespec-error 'subtypep type))
'STRING)
(SIMPLE-VECTOR ; (SIMPLE-VECTOR &optional size)
(when (cddr type)
(typespec-error 'subtypep type))
'VECTOR)
((VECTOR ARRAY SIMPLE-ARRAY) ; (VECTOR &optional el-type size), (ARRAY &optional el-type dimensions)
(when (cdddr type)
(typespec-error 'subtypep type))
(let ((el-type (if (cdr type) (second type) '*)))
(if (eq el-type '*)
'VECTOR
(let ((eltype (upgraded-array-element-type el-type)))
(cond ((eq eltype 'T) 'VECTOR)
((eq eltype 'CHARACTER) 'STRING)
((eq eltype 'BIT) '1)
((and (consp eltype) (eq (first eltype) 'UNSIGNED-BYTE)) (second eltype))
((eq eltype 'NIL) '0)
(t (error (TEXT "~S is not up-to-date with ~S for element type ~S")
'subtypep-sequence 'upgraded-array-element-type eltype)))))))
((CONS) ; (CONS &optional cartype cdrtype)
(when (cdddr type)
(typespec-error 'subtypep type))
'LIST)
(t 'NIL)))
((clos::defined-class-p type)
(if (and (clos::built-in-class-p type)
(eq (get (clos:class-name type) 'CLOS::CLOSCLASS) type))
(subtype-sequence (clos:class-name type))
'NIL))
((clos::eql-specializer-p type)
(type-of-sequence (clos::eql-specializer-singleton type)))
(t 'NIL)))
(defun type-of-sequence (x)
(cond ((listp x) 'LIST)
((vectorp x)
(let ((eltype (array-element-type x)))
(cond ((eq eltype 'T) 'VECTOR)
((eq eltype 'CHARACTER) 'STRING)
((eq eltype 'BIT) '1)
((and (consp eltype) (eq (first eltype) 'UNSIGNED-BYTE)) (second eltype))
((eq eltype 'NIL) '0)
(t (error (TEXT "~S is not up-to-date with ~S for element type ~S")
'type-of-sequence 'array-element-type eltype)))))
(t 'NIL)))
(defun sequence-type-union (t1 t2)
(cond ; Simple general rules.
((eql t1 t2) t1)
((eq t1 'NIL) t2)
((eq t2 'NIL) t1)
; Now the union of two different types.
((or (eq t1 'SEQUENCE) (eq t2 'SEQUENCE)) 'SEQUENCE)
((or (eq t1 'LIST) (eq t2 'LIST))
; union of LIST and a vector type
'SEQUENCE)
((or (eq t1 'VECTOR) (eq t2 'VECTOR)) 'VECTOR)
((eql t1 0) t2)
((eql t2 0) t1)
((or (eq t1 'STRING) (eq t2 'STRING))
; union of STRING and an integer-vector type
'VECTOR)
(t (max t1 t2))))
(defun sequence-type-intersection (t1 t2)
(cond ; Simple general rules.
((eql t1 t2) t1)
((or (eq t1 'NIL) (eq t2 'NIL)) 'NIL)
; Now the intersection of two different types.
((eq t1 'SEQUENCE) t2)
((eq t2 'SEQUENCE) t1)
((or (eq t1 'LIST) (eq t2 'LIST))
; intersection of LIST and a vector type
'NIL)
((eq t1 'VECTOR) t2)
((eq t2 'VECTOR) t1)
((or (eql t1 0) (eql t2 0)) '0)
((or (eq t1 'STRING) (eq t2 'STRING))
; intersection of STRING and an integer-vector type
'0)
(t (min t1 t2))))
;; ============================================================================
(defun type-expand (typespec &optional once-p)
(multiple-value-bind (expanded user-defined-p)
(expand-deftype typespec once-p)
(if user-defined-p (values expanded user-defined-p)
(cond ((symbolp typespec)
(cond ((or (get typespec 'TYPE-SYMBOL) (get typespec 'TYPE-LIST))
(values typespec nil))
((or (get typespec 'DEFSTRUCT-DESCRIPTION)
(clos-class typespec))
(values typespec nil))
(t (typespec-error 'type-expand typespec))))
((and (consp typespec) (symbolp (first typespec)))
(case (first typespec)
((SATISFIES MEMBER EQL NOT AND OR) (values typespec nil))
(t (cond ((get (first typespec) 'TYPE-LIST)
(values typespec nil))
(t (typespec-error 'type-expand typespec))))))
((clos::defined-class-p typespec) (values typespec nil))
(t (typespec-error 'type-expand typespec))))))
;; ============================================================================
(unless (clos::funcallable-instance-p #'clos::class-name)
(fmakunbound 'clos::class-name))
|