
PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

NAME
PyGopherd − Multiprotocol Information Server

SYNOPSIS
pygopherd [configfile]

DESCRIPTION
Welcome to PyGopherd. In a nutshell, PyGopherd is a modern dynamic multi-protocol hierarchical
information server with a pluggable modularized extension system, full flexible caching, virtual files and
folders, and autodetection of file types -- all with support for standardized yet extensible per-document
metadata. Whew! Read on for information on this what all these buzzwords mean.

FEATURES
Here are some of PyGopherd’s features:

• Provides built-in support for multiple protocols: HTTP (Web), Gopher+, Gopher (RFC1436), Enhanced
Gopher0, and WAP (mobile phones). Protocols can be enabled or disabled as desired.

• Provides protocol autodetection. That is, PyGopherd can listen for all the above protocols on a single
port and will automatically respond using the protocol it detects the client is using. Practical effects of
this are that you can, for instance, give out a single URL and have it viewable normally on desktop Web
browsers and in WAP mode on mobile phones -- and appropriately in various Gopher browsers.

• Metadata and site links can be entered in a variety of formats, including full UMN dotfile metadata for-
mats as well as Bucktooth gophermap files. Moreover, gophermap files are not limited to Gopher proto-
cols, and can be used for all protocols.

• Support for inter-protocol linking (linking from Gopher sites to web sites)

• Virtual folder system lets you serve up anything as if it were regular files and directories. PyGopherd
comes with the following virtual folder systems built in:

• Can present any Unix MBOX, MMDF box, MH directory, Maildir directory, or Babyl mailbox as a
virtual folder, the contents of which are the messages in the mailbox.

• Can use a configurable separator to split a file into multiple parts, the first line of each becoming the
name for the virtual folder.

• Can peek inside a ZIP file and serve it up as first-class site citizens -- metadata can even be stored in
the ZIP files.

• Can serve up the contents of a dictd server as a filesystem.

• Modular, extensible design: you can use PyGopherd’s own PYG extension format, or UMN- or Buck-
tooth-style executables.

• Runs on any platform supported by Python 2.2 or 2.3. This includes virtually every past and current
flavor of Unix (Linux, *BSD, Solaris, SunOS), Windows, MacOS 9.x and X, and more. Some features
may not be available on non-Unix platforms.

• Runs on any platform supported by Java 1.1 via the Jython Python implementation.

• Tunable server types via configuration directive -- forking or threading.

• Secure design with support for chrooted execution.

• Feature-complete, full implementations of: Gopher0 (RFC1435), Gopher+, HTTP, and WAP.

• Support for automatically finding the titles of HTML documents for presentation in a directory.

• Versatile configuration file format is both extensible and nicely complementary of the module system.

• Protocol-independant, handler-dependant caching. This increases performance by letting handlers
cache dynamically-generated information -- currently used by the directory handlers. This can improve
performance of directories by several orders of magnitude. Because this is a handler cache only, all pro-
tococls share the single cache. Since the processing time for the protocols is negligable, this works out

John Goerzen 25 August 2003 1

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

very well.

• Autosensing of MIME types and gopher0 item types. Both are completely configurable. MIME type
detection is done using a standard mime.types file, and gopher0 types are calculated by using a config-
urable regexp-based MIME-to-gophertype map.

• Heavy support of regular expressions in configuration.

• ProtocolMultiplexer and HandlerMultiplexer let you choose only those protocols and handlers that you
wish your server to support and the order in which they are tried when a request comes in.

• Full logging via syslog.

ABOUT GOPHER
PyGopherd started life as a server for the Gopher Internet protocol. With Gopher, you can mount a filesys-
tem (viewing files and folders as if they were local), browse Gopherspace with a web browser, download
files, and be interactive with searching.

But this is only part of the story. The world of Gopher is more expansive than this. There are two major
gopher protocols: Gopher0 (also known as RFC1436) and Gopher+. Gopher0 is a small, simple,
lightweight protocol that is very functional yet also extremely easy to implement. Gopher0 clients can be
easily places in small embedded devices or in massive environments like a modern web browser.

Gopher+ is based on Gopher0 but extends it by providing document metadata such as file size and MIME
type. Gopher+ allows all sorts of neat features, such as configurable metadata (serving up a bunch of pho-
tos? Add a Subject field to your metadata to let a customized photo browser display who is pictured) and
multiple views of a file (let the user select to view your photos as PNG or JPEG).

QUICK START
If you have already installed PyGopherd system-wide, or your administrator has done that for you, your
task for setting up PyGopherd for the first time is quite simple. You just need to set up your configuration
file, make your folder directory, and run it!

You can quickly set up your configuration file. The distribution includes two files of interest: conf/pygo-
pherd.conf and conf/mime.types. Debian users will find the configuration file pre-installed in /etc/pygo-
pherd/pygopherd.conf and the mime.types file provided by the system already.

Open up pygopherd.conf in your editor and adjust to suit. The file is heavily commented and you can refer
to it for detailed information. Some settings to take a look at include: detach, pidfile, port, usechroot,
setuid, setgid, and root. These may or may not work at their defaults for you. The remaining ones should
be fine for a basic setup.

Invoke PyGopherd with pygopherd path/to/configfile (or /etc/init.d/pygopherd start on Debian). Place
some files in the location specified by the root directive in the config file and you’re ready to run!

INSTALLATION
If you are reading this document via the "man" command, it is likely that you have no installation tasks to
perform; your system administra- tor has already installed PyGopherd. If you need to install it yourself,
you have three options: a system-wide installation with Debian, system-wide installation with other sys-
tems, and a single-user installation. You can download the latest version of PyGopherd from
<URL:http://quux.org/devel/gopher/pygopherd/>

DEBIAN SYSTEM-WIDE INSTALLATION
If you are tracking Debian unstable, you may install PyGopherd by simply running this command as root:

apt-get install pygopherd

If you are not tracking Debian unstable, download the .deb package from the PyGopherd website and then
run dpkg -i to install the downloaded package. Then, skip to the configuration section below. You will use
/etc/init.d/pygopherd start to start the program.

OTHER SYSTEM-WIDE INSTALLATION
Download the tar.gz version of the package from the website. Make sure you have Python 2.2 or above
installed; if now, download and install it from <URL:http://www.python.org/>. Then run these commands:

John Goerzen 25 August 2003 2

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

tar -zxvf pygopherd-x.y.z.tar.gz
cd pygopherd-x.y.z
python2.2 setup.py

Some systems will use python or python2.3 in place of python2.2.

Next, proceed to configuration. Make sure that the /etc/pygopherd/pygopherd.conf file names valid users
(setuid and setgid options) and a valid document root (root option).

You will type pygopherd to invoke the program.

SINGLE-ACCOUNT INSTALLATION
Download the tar.gz version of the package from the website. Make sure you have Python 2.2 or above
installed; if now, download and install it from <URL:http://www.python.org/>. Then run these commands:

tar -zxvf pygopherd-z.y.z.tar.gz
cd pygopherd-x.y.z

Modify conf/pygopherd.conf as follows:

• Set usechroot = no

• Comment out (add a # sign to the start of the line) the pidfile, setuid, and setgid lines.

• Set root to osomething appropriate.

• Set port to a number greater than 1024.

When you want to run PyGopherd, you will issue the cd command as above and then type PYTHON-
PATH=. bin/pygopherd. There is no installation step necessary.

CONFIGURATION
PyGopherd is regulated by a configuratoin file normally stored in /etc/pygopherd/pygopherd.conf. You can
specify an alternate configuration file on the command line. The PyGopherd distribution ships with a sam-
ple pygopherd.conf file that thoroughly documents the configuration file options and settings.

OPTIONS
All PyGopherd configuratoin is done via the configuration file. Therefore, the program has only one com-
mand-line option:

configfile
This option argument specifies the location of the configuration file that PyGopherd is to use.

HANDLERS
PyGopherd defines several handlers which are responsible for finding data on your server and presenting it
to the user. The handlers are used to generate things like links to other documents and directory listings.
They are also responsible for serving up regular files and even virtual folders.

Handlers are specified with the handlers option in pygopherd.conf. This option is a list of handlers to use.
For each request that arrives, PyGopherd will ask each handler in turn whether or not it can handle the
request, and will handle the request according to the first handler that is capable of doing so. If no handlers
can handle the request, a file not found error is generated. See the example configuration file for an exam-
ple.

The remaining parts of this section describe the different handlers that ship with PyGopherd. Please note
that some versions of this manual may show the handlers in all caps; however, their names are not all caps
and are case-sensitive.

DIR.DIRHANDLER
This handler is a basic one that generates menus based on the contents of a directory. It is used for directo-
ries that contain neither a gophermap file nor UMN-style links files, or situations where you have no need
for either of those.

John Goerzen 25 August 2003 3

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

This handler simply reads the contents of your on-disk directory, determines the appropriate types of each
file, and sends the result to the client. The descriptions of each item are usually set to the filename, but the
html.HTMLFileTitleHandler may override that.

GOPHERMAP.BUCKGOPHERMAPHANDLER
This handler is used to generate directory listings based on gophermap files. It will not read the directory
on-disk, instead serving content from the gophermap file only. Gophermaps are useful if you want to
present a directory in which the files do not frequently change and there is general information to present.
Overall, if you only wish to present information particular to certain files, you should consider using the
abstract feature of UMN.UMNDirHandler.

The gophermap files contain two types of lines, which are described here using the same convention nor-
mally used for command line arguments. In this section, the symbol \t will be used to indicate a tab charac-
ter, Control-I.

full line of informational text

gophertypeDESCRIPTION [\tselector [\thost [\tport]]]

Note: spaces shown above are for clarity only and should not actually be present in your file.

The informational text must not contain any tab characters, but may contain spaces. Informational text will
be rendered with gopher type i, which will cause it to be displayed on a client’s screen at its particular posi-
tion in the file.

The second type of line represents a link to a file or directory. It begins with a single-character Gopher type
(see Gopher Item Types below) followed immediately by a description and a tab character. There is no
space or other separator between the gopher type and the description. The description may contain spaces
but not tabs.

The remaining arguments are optional, but only to the extent that arguments may be omitted only if all
arguments after them are also omitted. These arguments are:

selector
The selector is the name of the file on the server. If it begins with a slash, it is an absolute path;
otherwise, it is interpreted relative to the directory that the gophermap file is in. If no selector is
specified, the description is also used as the selector.

host The host specifies the host on which this resource is located. If not specified, defaults to the cur-
rent server.

port The port specifies the port on which the resource is located. If not specified, defaults to the port
the current server is listening on.

An example of a gophermap to help illustrate the concept is included with the PyGopherd distribution in
the file examples/gophermap.

FILE.COMPRESSEDFILEHANDLER
In order to save space, you might want to store documents on-disk in a compressed format. But then clients
would ordinarily have to decompress the files themselves. It would be nice to have the server automatically
decompress the files on the fly, sending that result to the client. That’s where file.CompressedFileHandler
comes in.

This handler will take compressed files, pipe them through your chosen decompression program, and send
the result directly to clients -- completely transparently.

To use this handler, set the decompressors option in the configuration file. This option defines a mapping
from MIME encodings (as defined with the encoding option) to decompression programs. Files that are not
encoded, or which have an encoding that does not occur in the decompressors map, will not be decom-
pressed by this handler.

John Goerzen 25 August 2003 4

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

Please see the sample configuration file for more examples and details about the configuration of this han-
dler.

FILE.FILEHANDLER
The file.FileHandler is just that -- its duty is to serve up regular files to clients.

HTML.HTMLFILETITLEHANDLER
This handler is used when generating directories and will set the description of HTML files to the HTML
title defined in them rather than let it be the default filename. Other than that, it has no effect. UMN
gopherd implements a similar policy.

MBOX HANDLERS
There are four mailbox handlers:

• mbox.MaildirFolderHandler

• mbox.MaildirMessageHandler

• mbox.MBoxMessageHandler

• mbox.MBoxFolderHandler

These four handlers provide a unique "virtual folder" service. They allow you to present mailboxes as if
they were folders, the items of the folders being the messages in the mailbox, organized by subject. This is
useful for presenting mail archives or just making e-mail accessible in a nice and easy fashion.

To use these handlers, all you have to do is enable them in your handlers section. They will automatically
detect requests for mailboxes and handle them appropriately.

The different handlers are for traditional Unix mbox mailboxes (all messages in a single file) and new
qmail-stype Maildir mailboxes. You can enable only the two handlers for the specific mailbox type that
you use, if desired.

PYG.PYGHANDLER
PYG (short for PYGopherd) is a mechanism that provides a tremendous amount of flexibility. Rather than
just letting you execute a script like other Gopher or HTTP servers, PYGs are actually loaded up into
PyGopherd and become fully-capable first-class virtual handlers. Yet they need not be known ahead of
time, and are loaded dynamically.

With a PYG handler, you can generate gopher directories, handle searches, generate files, and more on the
fly. You can create entire virtual directory trees (for instance, to interface with NNTP servers or with DICT
servers), and access them all using the standard Gopher protocol. All of this without having to modify even
one line of PyGopherd code.

If enabled, the pyg.PYGHandler will look for files with the extension .pyg that are marked executable. If
found, they will be loaded and run as PYGs.

Please note: this module provides the capability to execute arbitrary code. Please consider the security ram-
ifications of that before enabling it.

See the virtual.Virtual handler for more information about passing data to your scripts at runtime.

At present, documentation on writing PYGs is not provides, but you may find examples in the pygfarm
directory included with the PyGopherd distribution.

SCRIPTEXEC.EXECHANDLER
This handler implements "old-style" script execution; that is, executing arbitrary programs and piping the
result to the client. It is, for the most part, compatible with both scripts written for UMN gopherd and the
Bucktooth gopher server. If enabled, it will execute any file that is marked executable in the filesystem. It
will normally list scripts as returning plain text, but you may create a custom link to the script that defines it
as returning whatever kind of file you desire. Unlike PYGs, this type must be known in advance.

The scriptexec.ExecHandler will set environment variables for your scripts to use. They are as follows:

John Goerzen 25 August 2003 5

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

SERVER_NAME
The name of this server as defined in the configuration file or detected from the operating system.

SERVER_PORT
The port this server is listening on.

REMOTE_ADDR
The IP address of the client.

REMOTE_PORT
The port number of the client.

REMOTE_HOST
The same value as REMOTE_ADDR

SELECTOR
The file that was requested; that is, the relative path to this script. If the selector included addi-
tional parameters after a |, they will be included in this string as well.

REQUEST
The "base" part of the selector; that is, the part leading up to the |.

SEARCHREQUEST
Included only if the client specified search data, this is used if the client is searching for some-
thing.

See the virtual.Virtual handler for more information about passing data to your scripts at runtime.

Please note: this module provides the capability to execute arbitrary code. Please consider the security ram-
ifications of that before enabling it.

UMN.UMNDIRHANDLER
This is one of the most powerful workhorse handlers in PyGopherd. It is designed to emulate most of the
ways in which the UMN gopherd distribution generates directories, even going so far as to be bug-compati-
ble in some cases. Generating directories with this handler is often the best general-purpose way to make
nice directories in gopherspace.

The remainder of the description of the UMN.UMNDirHandler, except for the Abstracts and Info section, is
lifted directly from the original UMN gopherd documentation, with light editing, because this handler
implements it so exactly that there was no point in rewriting all that documentation :-)

LINKS
You can override the default view of a directory as generated by dir.DirHandler by creating what are known
as Links in the data tree.

The ability to make links to other hosts is how gopher distributes itself among multiple hosts. There are
two different ways to make a link. The first and simplest is to create a link file that contains the data needed
by the server. By default all files in the gopher data directory starting with a period are taken to be link
files. A link file can contain multiple links. To define a link you need to put five lines in a link file that
define the needed characteristics for the document. Here is an example of a link.

Name=Cheese Ball Recipes
Numb=1
Type=1
Port=150
Path=1/Moo/Cheesy
Host=zippy.micro.umn.edu

The Name= line is what the user will see when cruising through the database. In this case the name is
"Cheese Ball Recipes". The "Type=" defines what kind of document this object is. For a list of all defined
types, see Gopher Item Types below. For Gopher+ and HTTP, a MIME type is also used, which is deter-
mined automatically based on the type you specify.

John Goerzen 25 August 2003 6

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

The "Path=" line contains the selector string that the client will use to retrieve the actual document. The
Numb= specifies that this entry should be presented first in the directory list (instead of being alphabetized).
The "Numb=" line is optional. If it is present it cannot be the last line of the link. The "Port=" and "Host="
lines specify a fully qualified domain name (FQDN) and a port respectively. You may substitute a plus ’+’
for these two parameters if you wish. The server will insert the current hostname and the current port when
it sees a plus in either of these two fields.

An easy way to retrieve links is to use the Curses Gopher Client. By pressing ’=’ You can get information
suitable for inclusion in a link file.

OVERRIDING DEFAULTS
The server looks for a directory called .cap when parsing a directory. The server then checks to see if the
.cap directory contains a file with the same name as the file it’s parsing. If this file exists then the server
will open it for reading. The server parses this file just like a link file. However, instead of making a new
object, the parameters inside the .cap/ file are used to override any of the server supplied default values.

For instance, say you wanted to change the Title of a text file for gopher, but don’t want to change the file-
name. You also don’t want it alphabetized, instead you want it second in the directory listing. You could
make a set-aside file in the .cap directory with the same filename that contained the following lines:

Name=New Long Cool Name
Numb=2

An alternative to .cap files are extended link files. They work just the same as the files described in Links
above, but have a somewhat abbreviated format. As an example, if the name of the file was file-to-change,
then you could create a file called .names with the following contents:

Path=./file-to-change
Name=New Long Cool Name
Numb=2

ADDING COOL LINKS
One cool thing you can do with .Links is to add neato services to your gopher server. Adding a link like
this:

Name=Cool ftp directory
Type=h
Path=/URL:ftp://hostname/path/
Host=+
Port=+

Name=Cool web site
Type=h
Path=/URL:http://hostname/
Host=+
Port=+

Will allow you to link in any FTP or Web site to your gopher. (See url.URLHandler for more details.)

You can easily add a finger site to your gopher server thusly:

Name=Finger information
Type=0
Path=lindner
Host=mudhoney.micro.umn.edu
Port=79

John Goerzen 25 August 2003 7

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

HIDING AN ENTRY
This kind of trick may be necessary in some cases, and thus for object "fred", the overriding .names file
entry would be:

Type=X
Path=./fred

by overriding default type to be "X". This kind of hideouts may be usefull, when for some reason there are
symlinks (or whatever) in the directory at which PyGopherd looks at, and those entries are not desired to
be shown at all.

ABSTRACTS AND INFO
Many modern gopher server maintainers like to intersperse gopher directory listings with other information
-- often, additional information about the contents of files in the directory. The gophermap system provides
one way to do that, and abstracts used with UMN gopher directories provides another.

Subject to the abstract_headers and abstract_entries configuration file options, this feature allows you to
define that extra information. You can do that by simply creating a file named filename.abstract right
alongside the regular file in your directory. The file will be interpreted as the abstract. For a directory, cre-
ate a file named .abstract in the directory. Simple as that!

URL.HTMLURLHANDLER
PyGopherd provides ways for you to link to pages outside Gopherspace -- that is, web pages, FTP sites,
and the like. This is accomplished according to the Links to URL <URL:http://lists.com-
plete.org/gopher@complete.org/2002/02/msg00033.html.gz> specification (see Conforming To below for
details). In order to link to a URL (EXCEPT gopher URLs) from a menu, you create a link of type h
(regardless of the actual type of the resource that you are linking to) in your gophermap or .Links file that
looks like this:

/URL:http://www.complete.org/

Modern Gopher clients that follow the Links to URL specification will automatically follow that link when
you select it. The rest need some help, and that’s where this handler comes in.

For Gopher clients that do not follow the Links to URL specification, the url.HTMLURLHandler will auto-
matically generate an HTML document for them on the fly. This document includes a refresh code that will
send them to the proper page. You should not disable this handler.

URL.URLTYPEREWRITER
Some people wish to serve HTML documents from their Gopher server. One problem with that is that links
in Gopherspace include an extra type character at the beginning, whereas links in HTTP do not. This han-
dler will remove the extra type character from HTTP requests that come in, allowing a single relative-to-
root link to work for both.

VIRTUAL.VIRTUAL
This handler is not intended to ever be used directly, but is used by many other handlers such as the mbox
support, PYG handlers, and others. It is used to generate virtual entries in the directory hierarchy -- that is,
entries that look normal to a client, but do not actually correspond to a file on disk.

One special feature of the virtual.Virtual handler is that you can send information to it at runtime in a man-
ner similar to a CGI script on the web. You do this by adding a question mark after the regular selector, fol-
lowed by any arbitrary data that you wish to have sent to the virtual request handler.

ZIP.ZIPHANDLER
Using zip.ZIPHandler, you can save space on your server by converting part or all of your site into a ZIP
file. PyGopherd can use the contents of that ZIP file as the contents of your site -- completely transpar-
ently.

John Goerzen 25 August 2003 8

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

The ZIP file handler must be enabled in the configuration file for this to work.

GOPHER ITEM TYPES
When you construct links to files via .Links or gophermap files, or modify the mapping in the configuration
file, you will need to know these. Items bearing the "not implemented" text are not served up by PyGo-
pherd as it ships, generally due to requirements of customized per-site software, but may be served up via
PYG extension modules or other gopher servers.

This list was prepared based on RFC1436, the UMN gopherd(1) manpage, and best current practices.

0 Plain text file

1 Directory

2 CSO phone book server (not implemented by PyGopherd)

3 Error condition; text that follows is plain text

4 Macintosh file, BinHex format

5 DOS binary archive (not implemented by PyGopherd; use type 9 instead)

6 uuencoded file; not directly generated by PyGopherd automatically, but can be linked to manu-
ally. Most gopher clients will handle this better as type 1.

7 Search

8 Telnet link

9 Binary file

+ Redundant server (not implemented by PyGopherd)

c Calendar (not implemented by PyGopherd)

e Event (not implemented by PyGopherd)

g GIF-format graphic

h HTML file

I Any kind of graphic file other than GIF

i Informational text included in a directory that is displayed but does not link to any actual file.

M MIME multipart/mixed file

s Any kind of sound file

T tn3270 link

X

- UMN-specific -- signifies that this entry should not be displayed in a directory entry, but may be
accessed via a direct link. This value is never transmitted in any Gopher protocol.

CONFORMING TO
• The Internet Gopher Protocol as specified in RFC1436

• The Gopher+ upward-compatible enhancements to the Internet Gopher Protocol from the University of
Minnesota as laid out at
<URL:gopher://gopher.quux.org/0/Archives/mirrors/boombox.micro.umn.edu/pub/gopher/gopher_pro-

tocol/Gopher+/Gopher+.txt>.

• The gophermap file format as originally implemented in the Bucktooth gopher server and described at
<URL:gopher://gopher.floodgap.com/0/buck/dbrowse%3Ffaquse%201>.

• The Links to URL specification as laid out by John Goerzen at
<URL:gopher://gopher.quux.org/0/Archives/Mailing%20Lists/gopher/gopher.2002-02%3f/MBOX-

MESSAGE/34>.

John Goerzen 25 August 2003 9

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

• The UMN format for specifying object attributes and links with .cap, .Links, .abstract, and similar files
as specified elsewhere in this document and implemented by UMN gopherd.

• The PYG format for extensible Python gopher objects as created for PyGopherd.

• Hypertext Transfer Protocol HTTP/1.0 as specified in RFC1945

• Hypertext Markup Language (HTML) 3.2 and 4.0 Transitional as specified in RFC1866 and RFC2854.

• Maildir as specified in
<URL:http://www.qmail.org/qmail-manual-html/man5/maildir.html> and
<URL:http://cr.yp.to/proto/maildir.html>.

• The mbox mail storage format as specified in
<URL:http://www.qmail.org/qmail-manual-html/man5/mbox.html>.

• Registered MIME media types as specified in RFC2048.

• Script execution conforming to both UMN standards as laid out in UMN gopherd(1) and Bucktooth
standards as specified at
<URL:gopher://gopher.floodgap.com:70/0/buck/dbrowse%3ffaquse%202>, so far as each can be
implemented consistent with secure design principles.

• Standard Python 2.2.1 or above as implemented on POSIX-compliant systems.

• WAP/WML as defined by the WAP Forum.

BUGS
Reports of bugs should be sent via e-mail to the PyGopherd bug-tracking system (BTS) at <pygo-
pherd@bugs.complete.org> or submitted online using the Web interface at <URL:http://bugs.com-
plete.org/>.

The Web site also lists all current bugs, where you can check their status or contribute to fixing them.

COPYRIGHT
PyGopherd is Copyright (C) 2002, 2003 John Goerzen.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to:

Free Software Foundation, Inc.
59 Temple Place
Suite 330
Boston, MA 02111-1307
USA

AUTHOR
PyGopherd, its libraries, documentation, and all included files (except where noted) was written by John
Goerzen <jgoerzen@complete.org> and copyright is held as stated in the Copyright section.

Portions of this manual (specifically relating to certian UMN gopherd features and characteristics that
PyGopherd emulates) are modified versions of the original gopherd(1) manpage accompanying the UMN
gopher distribution. That document is distributed under the same terms as this, and bears the following
copyright notices:

Copyright (C) 1991-2000 University of Minnesota
Copyright (C) 2000-2002 John Goerzen and other developers

John Goerzen 25 August 2003 10

PYGOPHERD(8) PyGopherd Manual PYGOPHERD(8)

PyGopherd may be downloaded, and information found, from its homepage via either Gopher or HTTP:

<URL:gopher://quux.org/1/devel/gopher/pygopherd>

<URL:http://quux.org/devel/gopher/pygopherd>

PyGopherd may also be downloaded using Subversion. Additionally, the distributed tar.gz may be
updated with a simple "svn update" command; it is ready to go. For information on getting PyGopherd
with Subversion, please visit <URL:http://svn.complete.org/>.

SEE ALSO
python (1).

John Goerzen 25 August 2003 11

