1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Remarks on Adaptation and Typecasting — PyGreSQL 5.0 documentation</title>
<link rel="stylesheet" href="../../_static/cloud.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygresql.css" type="text/css" />
<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Noticia+Text|Open+Sans|Droid+Sans+Mono" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '5.0.3',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/jquery.cookie.js"></script>
<script type="text/javascript" src="../../_static/cloud.js"></script>
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="copyright" title="Copyright" href="../../copyright.html" />
<link rel="top" title="PyGreSQL 5.0 documentation" href="../index.html" />
<link rel="up" title="pgdb — The DB-API Compliant Interface" href="index.html" />
<link rel="next" title="A PostgreSQL Primer" href="../postgres/index.html" />
<link rel="prev" title="TypeCache – The internal cache for database types" href="typecache.html" />
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body role="document">
<div class="pageheader related" role="navigation" aria-label="related navigation">
<ul>
<li><a href="../../index.html">Home</a></li>
<li><a href="../../download/index.html">Download</a></li>
<li><a href="../index.html">Documentation</a></li>
<li><a href="../../community/index.html">Community</a></li>
</ul>
<div class="logo">
<a href="../../index.html">PyGreSQL</a>
</div>
</div>
</div>
<div class="relbar-top">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../../py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="../postgres/index.html" title="A PostgreSQL Primer"
accesskey="N">next</a> </li>
<li class="right" >
<a href="typecache.html" title="TypeCache – The internal cache for database types"
accesskey="P">previous</a> </li>
<li><a href="../index.html">PyGreSQL 5.0 documentation</a> »</li>
<li class="nav-item nav-item-1"><a href="index.html" accesskey="U"><code class="docutils literal"><span class="pre">pgdb</span></code> — The DB-API Compliant Interface</a> »</li>
</ul>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="remarks-on-adaptation-and-typecasting">
<h1>Remarks on Adaptation and Typecasting<a class="headerlink" href="#remarks-on-adaptation-and-typecasting" title="Permalink to this headline">¶</a></h1>
<p>Both PostgreSQL and Python have the concept of data types, but there
are of course differences between the two type systems. Therefore PyGreSQL
needs to adapt Python objects to the representation required by PostgreSQL
when passing values as query parameters, and it needs to typecast the
representation of PostgreSQL data types returned by database queries to
Python objects. Here are some explanations about how this works in
detail in case you want to better understand or change the default
behavior of PyGreSQL.</p>
<div class="section" id="supported-data-types">
<h2>Supported data types<a class="headerlink" href="#supported-data-types" title="Permalink to this headline">¶</a></h2>
<p>The following automatic data type conversions are supported by PyGreSQL
out of the box. If you need other automatic type conversions or want to
change the default conversions, you can achieve this by using the methods
explained in the next two sections.</p>
<table border="1" class="docutils">
<colgroup>
<col width="65%" />
<col width="35%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">PostgreSQL</th>
<th class="head">Python</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>char, bpchar, name, text, varchar</td>
<td>str</td>
</tr>
<tr class="row-odd"><td>bool</td>
<td>bool</td>
</tr>
<tr class="row-even"><td>bytea</td>
<td>bytes</td>
</tr>
<tr class="row-odd"><td>int2, int4, int8, oid, serial</td>
<td>int <a class="footnote-reference" href="#int8" id="id1">[1]</a></td>
</tr>
<tr class="row-even"><td>int2vector</td>
<td>list of int</td>
</tr>
<tr class="row-odd"><td>float4, float8</td>
<td>float</td>
</tr>
<tr class="row-even"><td>numeric, money</td>
<td>Decimal</td>
</tr>
<tr class="row-odd"><td>date</td>
<td>datetime.date</td>
</tr>
<tr class="row-even"><td>time, timetz</td>
<td>datetime.time</td>
</tr>
<tr class="row-odd"><td>timestamp, timestamptz</td>
<td>datetime.datetime</td>
</tr>
<tr class="row-even"><td>interval</td>
<td>datetime.timedelta</td>
</tr>
<tr class="row-odd"><td>hstore</td>
<td>dict</td>
</tr>
<tr class="row-even"><td>json, jsonb</td>
<td>list or dict</td>
</tr>
<tr class="row-odd"><td>uuid</td>
<td>uuid.UUID</td>
</tr>
<tr class="row-even"><td>array</td>
<td>list <a class="footnote-reference" href="#array" id="id2">[2]</a></td>
</tr>
<tr class="row-odd"><td>record</td>
<td>tuple</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>Elements of arrays and records will also be converted accordingly.</p>
<table class="docutils footnote" frame="void" id="int8" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>int8 is converted to long in Python 2</td></tr>
</tbody>
</table>
<table class="last docutils footnote" frame="void" id="array" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[2]</a></td><td>The first element of the array will always be the first element
of the Python list, no matter what the lower bound of the PostgreSQL
array is. The information about the start index of the array (which is
usually 1 in PostgreSQL, but can also be different from 1) is ignored
and gets lost in the conversion to the Python list. If you need that
information, you can request it separately with the <cite>array_lower()</cite>
function provided by PostgreSQL.</td></tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="adaptation-of-parameters">
<h2>Adaptation of parameters<a class="headerlink" href="#adaptation-of-parameters" title="Permalink to this headline">¶</a></h2>
<p>PyGreSQL knows how to adapt the common Python types to get a suitable
representation of their values for PostgreSQL when you pass parameters
to a query. For example:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">con</span> <span class="o">=</span> <span class="n">pgdb</span><span class="o">.</span><span class="n">connect</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cur</span> <span class="o">=</span> <span class="n">con</span><span class="o">.</span><span class="n">cursor</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">parameters</span> <span class="o">=</span> <span class="p">(</span><span class="mi">144</span><span class="p">,</span> <span class="mf">3.75</span><span class="p">,</span> <span class="s">'hello'</span><span class="p">,</span> <span class="k">None</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">tuple</span><span class="p">(</span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">'SELECT %s, %s, %s, %s'</span><span class="p">,</span> <span class="n">parameters</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()</span>
<span class="go">(144, Decimal('3.75'), 'hello', None)</span>
</pre></div>
</div>
<p>This is the result we can expect, so obviously PyGreSQL has adapted the
parameters and sent the following query to PostgreSQL:</p>
<div class="highlight-sql"><div class="highlight"><pre><span class="k">SELECT</span> <span class="mi">144</span><span class="p">,</span> <span class="mi">3</span><span class="p">.</span><span class="mi">75</span><span class="p">,</span> <span class="s1">'hello'</span><span class="p">,</span> <span class="k">NULL</span>
</pre></div>
</div>
<p>Note the subtle, but important detail that even though the SQL string passed
to <code class="xref py py-meth docutils literal"><span class="pre">cur.execute()</span></code> contains conversion specifications normally used in
Python with the <code class="docutils literal"><span class="pre">%</span></code> operator for formatting strings, we didn’t use the <code class="docutils literal"><span class="pre">%</span></code>
operator to format the parameters, but passed them as the second argument to
<code class="xref py py-meth docutils literal"><span class="pre">cur.execute()</span></code>. I.e. we <strong>didn’t</strong> write the following:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="nb">tuple</span><span class="p">(</span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">'SELECT %s, %s, %s, %s'</span> <span class="o">%</span> <span class="n">parameters</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()</span>
</pre></div>
</div>
<p>If we had done this, PostgreSQL would have complained because the parameters
were not adapted. Particularly, there would be no quotes around the value
<code class="docutils literal"><span class="pre">'hello'</span></code>, so PostgreSQL would have interpreted this as a database column,
which would have caused a <a class="reference internal" href="module.html#pgdb.ProgrammingError" title="pgdb.ProgrammingError"><code class="xref py py-exc docutils literal"><span class="pre">ProgrammingError</span></code></a>. Also, the Python value
<code class="docutils literal"><span class="pre">None</span></code> would have been included in the SQL command literally, instead of
being converted to the SQL keyword <code class="docutils literal"><span class="pre">NULL</span></code>, which would have been another
reason for PostgreSQL to complain about our bad query:</p>
<div class="highlight-sql"><div class="highlight"><pre><span class="k">SELECT</span> <span class="mi">144</span><span class="p">,</span> <span class="mi">3</span><span class="p">.</span><span class="mi">75</span><span class="p">,</span> <span class="n">hello</span><span class="p">,</span> <span class="k">None</span>
</pre></div>
</div>
<p>Even worse, building queries with the use of the <code class="docutils literal"><span class="pre">%</span></code> operator makes us
vulnerable to so called “SQL injection” exploits, where an attacker inserts
malicious SQL statements into our queries that we never intended to be
executed. We could avoid this by carefully quoting and escaping the
parameters, but this would be tedious and if we overlook something, our
code will still be vulnerable. So please don’t do this. This cannot be
emphasized enough, because it is such a subtle difference and using the <code class="docutils literal"><span class="pre">%</span></code>
operator looks so natural:</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">Remember to <strong>never</strong> insert parameters directly into your queries using
the <code class="docutils literal"><span class="pre">%</span></code> operator. Always pass the parameters separately.</p>
</div>
<p>The good thing is that by letting PyGreSQL do the work for you, you can treat
all your parameters equally and don’t need to ponder where you need to put
quotes or need to escape strings. You can and should also always use the
general <code class="docutils literal"><span class="pre">%s</span></code> specification instead of e.g. using <code class="docutils literal"><span class="pre">%d</span></code> for integers.
Actually, to avoid mistakes and make it easier to insert parameters at more
than one location, you can and should use named specifications, like this:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">greeting</span><span class="o">=</span><span class="s">'Hello'</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s">'HAL'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">sql</span> <span class="o">=</span> <span class="s">"""SELECT %(greeting)s || ', ' || %(name)s</span>
<span class="gp">... </span><span class="s"> || '. Do you read me, ' || %(name)s || '?'"""</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="n">sql</span><span class="p">,</span> <span class="n">params</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">'Hello, HAL. Do you read me, HAL?'</span>
</pre></div>
</div>
<p>PyGreSQL does not only adapt the basic types like <code class="docutils literal"><span class="pre">int</span></code>, <code class="docutils literal"><span class="pre">float</span></code>,
<code class="docutils literal"><span class="pre">bool</span></code> and <code class="docutils literal"><span class="pre">str</span></code>, but also tries to make sense of Python lists and tuples.</p>
<p>Lists are adapted as PostgreSQL arrays:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">array</span><span class="o">=</span><span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]])</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT %(array)s"</span><span class="p">,</span> <span class="n">params</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">[[1, 2], [3, 4]]</span>
</pre></div>
</div>
<p>Note that the query gives the value back as Python lists again. This
is achieved by the typecasting mechanism explained in the next section.
The query that was actually executed was this:</p>
<div class="highlight-sql"><div class="highlight"><pre><span class="k">SELECT</span> <span class="nb">ARRAY</span><span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">],[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">]]</span>
</pre></div>
</div>
<p>Again, if we had inserted the list using the <code class="docutils literal"><span class="pre">%</span></code> operator without adaptation,
the <code class="docutils literal"><span class="pre">ARRAY</span></code> keyword would have been missing in the query.</p>
<p>Tuples are adapted as PostgreSQL composite types:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">record</span><span class="o">=</span><span class="p">(</span><span class="s">'Bond'</span><span class="p">,</span> <span class="s">'James'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT %(record)s"</span><span class="p">,</span> <span class="n">params</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">('Bond', 'James')</span>
</pre></div>
</div>
<p>You can also use this feature with the <code class="docutils literal"><span class="pre">IN</span></code> syntax of SQL:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">what</span><span class="o">=</span><span class="s">'needle'</span><span class="p">,</span> <span class="n">where</span><span class="o">=</span><span class="p">(</span><span class="s">'needle'</span><span class="p">,</span> <span class="s">'haystack'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT %(what)s IN %(where)s"</span><span class="p">,</span> <span class="n">params</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">True</span>
</pre></div>
</div>
<p>Sometimes a Python type can be ambiguous. For instance, you might want
to insert a Python list not into an array column, but into a JSON column.
Or you want to interpret a string as a date and insert it into a DATE column.
In this case you can give PyGreSQL a hint by using <a class="reference internal" href="types.html#type-constructors"><span class="std std-ref">Type constructors</span></a>:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"CREATE TABLE json_data (data json, created date)"</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">data</span><span class="o">=</span><span class="n">pgdb</span><span class="o">.</span><span class="n">Json</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]),</span> <span class="n">created</span><span class="o">=</span><span class="n">pgdb</span><span class="o">.</span><span class="n">Date</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">29</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">sql</span> <span class="o">=</span> <span class="p">(</span><span class="s">"INSERT INTO json_data VALUES (%(data)s, %(created)s)"</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="n">sql</span><span class="p">,</span> <span class="n">params</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT * FROM json_data"</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()</span>
<span class="go">Row(data=[1, 2, 3], created='2016-01-29')</span>
</pre></div>
</div>
<p>Let’s think of another example where we create a table with a composite
type in PostgreSQL:</p>
<div class="highlight-sql"><div class="highlight"><pre><span class="k">CREATE</span> <span class="k">TABLE</span> <span class="n">on_hand</span> <span class="p">(</span>
<span class="n">item</span> <span class="n">inventory_item</span><span class="p">,</span>
<span class="k">count</span> <span class="nb">integer</span><span class="p">)</span>
</pre></div>
</div>
<p>We assume the composite type <code class="docutils literal"><span class="pre">inventory_item</span></code> has been created like this:</p>
<div class="highlight-sql"><div class="highlight"><pre><span class="k">CREATE</span> <span class="k">TYPE</span> <span class="n">inventory_item</span> <span class="k">AS</span> <span class="p">(</span>
<span class="n">name</span> <span class="nb">text</span><span class="p">,</span>
<span class="n">supplier_id</span> <span class="nb">integer</span><span class="p">,</span>
<span class="n">price</span> <span class="nb">numeric</span><span class="p">)</span>
</pre></div>
</div>
<p>In Python we can use a named tuple as an equivalent to this PostgreSQL type:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">collections</span> <span class="k">import</span> <span class="n">namedtuple</span>
<span class="gp">>>> </span><span class="n">inventory_item</span> <span class="o">=</span> <span class="n">namedtuple</span><span class="p">(</span>
<span class="gp">... </span> <span class="s">'inventory_item'</span><span class="p">,</span> <span class="p">[</span><span class="s">'name'</span><span class="p">,</span> <span class="s">'supplier_id'</span><span class="p">,</span> <span class="s">'price'</span><span class="p">])</span>
</pre></div>
</div>
<p>Using the automatic adaptation of Python tuples, an item can now be
inserted into the database and then read back as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"INSERT INTO on_hand VALUES (%(item)s, %(count)s)"</span><span class="p">,</span>
<span class="gp">... </span> <span class="nb">dict</span><span class="p">(</span><span class="n">item</span><span class="o">=</span><span class="n">inventory_item</span><span class="p">(</span><span class="s">'fuzzy dice'</span><span class="p">,</span> <span class="mi">42</span><span class="p">,</span> <span class="mf">1.99</span><span class="p">),</span> <span class="n">count</span><span class="o">=</span><span class="mi">1000</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT * FROM on_hand"</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()</span>
<span class="go">Row(item=inventory_item(name='fuzzy dice', supplier_id=42,</span>
<span class="go"> price=Decimal('1.99')), count=1000)</span>
</pre></div>
</div>
<p>However, we may not want to use named tuples, but custom Python classes
to hold our values, like this one:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="k">class</span> <span class="nc">InventoryItem</span><span class="p">:</span>
<span class="gp">...</span>
<span class="gp">... </span> <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">supplier_id</span><span class="p">,</span> <span class="n">price</span><span class="p">):</span>
<span class="gp">... </span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">name</span>
<span class="gp">... </span> <span class="bp">self</span><span class="o">.</span><span class="n">supplier_id</span> <span class="o">=</span> <span class="n">supplier_id</span>
<span class="gp">... </span> <span class="bp">self</span><span class="o">.</span><span class="n">price</span> <span class="o">=</span> <span class="n">price</span>
<span class="gp">...</span>
<span class="gp">... </span> <span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="gp">... </span> <span class="k">return</span> <span class="s">'%s (from %s, at $%s)'</span> <span class="o">%</span> <span class="p">(</span>
<span class="gp">... </span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">supplier_id</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">price</span><span class="p">)</span>
</pre></div>
</div>
<p>But when we try to insert an instance of this class in the same way, we
will get an error:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"INSERT INTO on_hand VALUES (%(item)s, %(count)s)"</span><span class="p">,</span>
<span class="gp">... </span> <span class="nb">dict</span><span class="p">(</span><span class="n">item</span><span class="o">=</span><span class="n">InventoryItem</span><span class="p">(</span><span class="s">'fuzzy dice'</span><span class="p">,</span> <span class="mi">42</span><span class="p">,</span> <span class="mf">1.99</span><span class="p">),</span> <span class="n">count</span><span class="o">=</span><span class="mi">1000</span><span class="p">))</span>
<span class="go">InterfaceError: Do not know how to adapt type <class 'InventoryItem'></span>
</pre></div>
</div>
<p>While PyGreSQL knows how to adapt tuples, it does not know what to make out
of our custom class. To simply convert the object to a string using the
<code class="docutils literal"><span class="pre">str</span></code> function is not a solution, since this yields a human readable string
that is not useful for PostgreSQL. However, it is possible to make such
custom classes adapt themselves to PostgreSQL by adding a “magic” method
with the name <code class="docutils literal"><span class="pre">__pg_repr__</span></code>, like this:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="k">class</span> <span class="nc">InventoryItem</span><span class="p">:</span>
<span class="go"> ...</span>
<span class="go"> ... ...</span>
<span class="go"> ...</span>
<span class="go"> ... def __str__(self):</span>
<span class="go"> ... return '%s (from %s, at $%s)' % (</span>
<span class="go"> ... self.name, self.supplier_id, self.price)</span>
<span class="go"> ...</span>
<span class="go"> ... def __pg_repr__(self):</span>
<span class="go"> ... return (self.name, self.supplier_id, self.price)</span>
</pre></div>
</div>
<p>Now you can insert class instances the same way as you insert named tuples.</p>
<p>Note that PyGreSQL adapts the result of <code class="docutils literal"><span class="pre">__pg_repr__</span></code> again if it is a
tuple or a list. Otherwise, it must be a properly escaped string.</p>
</div>
<div class="section" id="typecasting-to-python">
<h2>Typecasting to Python<a class="headerlink" href="#typecasting-to-python" title="Permalink to this headline">¶</a></h2>
<p>As you noticed, PyGreSQL automatically converted the PostgreSQL data to
suitable Python objects when returning values via one of the “fetch” methods
of a cursor. This is done by the use of built-in typecast functions.</p>
<p>If you want to use different typecast functions or add your own if no
built-in typecast function is available, then this is possible using
the <a class="reference internal" href="module.html#pgdb.set_typecast" title="pgdb.set_typecast"><code class="xref py py-func docutils literal"><span class="pre">set_typecast()</span></code></a> function. With the <a class="reference internal" href="module.html#pgdb.get_typecast" title="pgdb.get_typecast"><code class="xref py py-func docutils literal"><span class="pre">get_typecast()</span></code></a> function
you can check which function is currently set, and <a class="reference internal" href="module.html#pgdb.reset_typecast" title="pgdb.reset_typecast"><code class="xref py py-func docutils literal"><span class="pre">reset_typecast()</span></code></a>
allows you to reset the typecast function to its default. If no typecast
function is set, then PyGreSQL will return the raw strings from the database.</p>
<p>For instance, you will find that PyGreSQL uses the normal <code class="docutils literal"><span class="pre">int</span></code> function
to cast PostgreSQL <code class="docutils literal"><span class="pre">int4</span></code> type values to Python:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">pgdb</span><span class="o">.</span><span class="n">get_typecast</span><span class="p">(</span><span class="s">'int4'</span><span class="p">)</span>
<span class="go">int</span>
</pre></div>
</div>
<p>You can change this to return float values instead:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">pgdb</span><span class="o">.</span><span class="n">set_typecast</span><span class="p">(</span><span class="s">'int4'</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">con</span> <span class="o">=</span> <span class="n">pgdb</span><span class="o">.</span><span class="n">connect</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cur</span> <span class="o">=</span> <span class="n">con</span><span class="o">.</span><span class="n">cursor</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">'select 42::int4'</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">42.0</span>
</pre></div>
</div>
<p>Note that the connections cache the typecast functions, so you may need to
reopen the database connection, or reset the cache of the connection to
make this effective, using the following command:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">con</span><span class="o">.</span><span class="n">type_cache</span><span class="o">.</span><span class="n">reset_typecast</span><span class="p">()</span>
</pre></div>
</div>
<p>The <a class="reference internal" href="typecache.html#pgdb.TypeCache" title="pgdb.TypeCache"><code class="xref py py-class docutils literal"><span class="pre">TypeCache</span></code></a> of the connection can also be used to change typecast
functions locally for one database connection only.</p>
<p>As a more useful example, we can create a typecast function that casts
items of the composite type used as example in the previous section
to instances of the corresponding Python class:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">con</span><span class="o">.</span><span class="n">type_cache</span><span class="o">.</span><span class="n">reset_typecast</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">cast_tuple</span> <span class="o">=</span> <span class="n">con</span><span class="o">.</span><span class="n">type_cache</span><span class="o">.</span><span class="n">get_typecast</span><span class="p">(</span><span class="s">'inventory_item'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cast_item</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">value</span><span class="p">:</span> <span class="n">InventoryItem</span><span class="p">(</span><span class="o">*</span><span class="n">cast_tuple</span><span class="p">(</span><span class="n">value</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">con</span><span class="o">.</span><span class="n">type_cache</span><span class="o">.</span><span class="n">set_typecast</span><span class="p">(</span><span class="s">'inventory_item'</span><span class="p">,</span> <span class="n">cast_item</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">str</span><span class="p">(</span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT * FROM on_hand"</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'fuzzy dice (from 42, at $1.99)'</span>
</pre></div>
</div>
<p>As you saw in the last section you, PyGreSQL also has a typecast function
for JSON, which is the default JSON decoder from the standard library.
Let’s assume we want to use a slight variation of that decoder in which
every integer in JSON is converted to a float in Python. This can be
accomplished as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">json</span> <span class="k">import</span> <span class="n">loads</span>
<span class="gp">>>> </span><span class="n">cast_json</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">loads</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">parse_int</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pgdb</span><span class="o">.</span><span class="n">set_typecast</span><span class="p">(</span><span class="s">'json'</span><span class="p">,</span> <span class="n">cast_json</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cur</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"SELECT data FROM json_data"</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">[1.0, 2.0, 3.0]</span>
</pre></div>
</div>
<p>Note again that you may need to run <code class="docutils literal"><span class="pre">con.type_cache.reset_typecast()</span></code> to
make this effective. Also note that the two types <code class="docutils literal"><span class="pre">json</span></code> and <code class="docutils literal"><span class="pre">jsonb</span></code> have
their own typecast functions, so if you use <code class="docutils literal"><span class="pre">jsonb</span></code> instead of <code class="docutils literal"><span class="pre">json</span></code>, you
need to use this type name when setting the typecast function:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">pgdb</span><span class="o">.</span><span class="n">set_typecast</span><span class="p">(</span><span class="s">'jsonb'</span><span class="p">,</span> <span class="n">cast_json</span><span class="p">)</span>
</pre></div>
</div>
<p>As one last example, let us try to typecast the geometric data type <code class="docutils literal"><span class="pre">circle</span></code>
of PostgreSQL into a <a class="reference external" href="http://www.sympy.org">SymPy</a> <code class="docutils literal"><span class="pre">Circle</span></code> object. Let’s
assume we have created and populated a table with two circles, like so:</p>
<div class="highlight-sql"><div class="highlight"><pre><span class="k">CREATE</span> <span class="k">TABLE</span> <span class="n">circle</span> <span class="p">(</span>
<span class="n">name</span> <span class="nb">varchar</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span> <span class="k">primary</span> <span class="k">key</span><span class="p">,</span> <span class="n">circle</span> <span class="n">circle</span><span class="p">);</span>
<span class="k">INSERT</span> <span class="k">INTO</span> <span class="n">circle</span> <span class="k">VALUES</span> <span class="p">(</span><span class="s1">'C1'</span><span class="p">,</span> <span class="s1">'<(2, 3), 3>'</span><span class="p">);</span>
<span class="k">INSERT</span> <span class="k">INTO</span> <span class="n">circle</span> <span class="k">VALUES</span> <span class="p">(</span><span class="s1">'C2'</span><span class="p">,</span> <span class="s1">'<(1, -1), 4>'</span><span class="p">);</span>
</pre></div>
</div>
<p>With PostgreSQL we can easily calculate that these two circles overlap:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">con</span><span class="o">.</span><span class="n">cursor</span><span class="p">()</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">"""SELECT c1.circle && c2.circle</span>
<span class="gp">... </span><span class="s"> FROM circle c1, circle c2</span>
<span class="gp">... </span><span class="s"> WHERE c1.name = 'C1' AND c2.name = 'C2'"""</span><span class="p">)</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">True</span>
</pre></div>
</div>
<p>However, calculating the intersection points between the two circles using the
<code class="docutils literal"><span class="pre">#</span></code> operator does not work (at least not as of PostgreSQL version 9.5).
So let’ resort to SymPy to find out. To ease importing circles from
PostgreSQL to SymPy, we create and register the following typecast function:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sympy</span> <span class="k">import</span> <span class="n">Point</span><span class="p">,</span> <span class="n">Circle</span>
<span class="go">>>></span>
<span class="gp">>>> </span><span class="k">def</span> <span class="nf">cast_circle</span><span class="p">(</span><span class="n">s</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">p</span><span class="p">,</span> <span class="n">r</span> <span class="o">=</span> <span class="n">s</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s">','</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="gp">... </span> <span class="n">p</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">','</span><span class="p">)</span>
<span class="gp">... </span> <span class="k">return</span> <span class="n">Circle</span><span class="p">(</span><span class="n">Point</span><span class="p">(</span><span class="nb">float</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="nb">float</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">])),</span> <span class="nb">float</span><span class="p">(</span><span class="n">r</span><span class="p">))</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">pgdb</span><span class="o">.</span><span class="n">set_typecast</span><span class="p">(</span><span class="s">'circle'</span><span class="p">,</span> <span class="n">cast_circle</span><span class="p">)</span>
</pre></div>
</div>
<p>Now we can import the circles in the table into Python quite easily:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">circle</span> <span class="o">=</span> <span class="p">{</span><span class="n">c</span><span class="o">.</span><span class="n">name</span><span class="p">:</span> <span class="n">c</span><span class="o">.</span><span class="n">circle</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">con</span><span class="o">.</span><span class="n">cursor</span><span class="p">()</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span>
<span class="gp">... </span> <span class="s">"SELECT * FROM circle"</span><span class="p">)</span><span class="o">.</span><span class="n">fetchall</span><span class="p">()}</span>
</pre></div>
</div>
<p>The result is a dictionary mapping circle names to SymPy <code class="docutils literal"><span class="pre">Circle</span></code> objects.
We can verify that the circles have been imported correctly:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">circle</span>
<span class="go">{'C1': Circle(Point(2, 3), 3.0),</span>
<span class="go"> 'C2': Circle(Point(1, -1), 4.0)}</span>
</pre></div>
</div>
<p>Finally we can find the exact intersection points with SymPy:</p>
<div class="highlight-default"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">circle</span><span class="p">[</span><span class="s">'C1'</span><span class="p">]</span><span class="o">.</span><span class="n">intersection</span><span class="p">(</span><span class="n">circle</span><span class="p">[</span><span class="s">'C2'</span><span class="p">])</span>
<span class="go">[Point(29/17 + 64564173230121*sqrt(17)/100000000000000,</span>
<span class="go"> -80705216537651*sqrt(17)/500000000000000 + 31/17),</span>
<span class="go"> Point(-64564173230121*sqrt(17)/100000000000000 + 29/17,</span>
<span class="go"> 80705216537651*sqrt(17)/500000000000000 + 31/17)]</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="../index.html" title="contents/index">
<img class="logo" src="../../_static/pygresql.png" alt="Logo"/>
</a></p><div class="sphinxlocaltoc">
<h3><a href="../../index.html">Page contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Remarks on Adaptation and Typecasting</a><ul>
<li><a class="reference internal" href="#supported-data-types">Supported data types</a></li>
<li><a class="reference internal" href="#adaptation-of-parameters">Adaptation of parameters</a></li>
<li><a class="reference internal" href="#typecasting-to-python">Typecasting to Python</a></li>
</ul>
</li>
</ul>
</div>
<div class="sphinxprev">
<h4>Previous page</h4>
<p class="topless"><a href="typecache.html"
title="Previous page">← TypeCache – The internal cache for database types</a></p>
</div>
<div class="sphinxnext">
<h4>Next page</h4>
<p class="topless"><a href="../postgres/index.html"
title="Next page">→ A PostgreSQL Primer</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../../_sources/contents/pgdb/adaptation.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<form class="search" action="../../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="relbar-bottom">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="../../py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="../postgres/index.html" title="A PostgreSQL Primer"
>next</a> </li>
<li class="right" >
<a href="typecache.html" title="TypeCache – The internal cache for database types"
>previous</a> </li>
<li><a href="../index.html">PyGreSQL 5.0 documentation</a> »</li>
<li class="nav-item nav-item-1"><a href="index.html" ><code class="docutils literal"><span class="pre">pgdb</span></code> — The DB-API Compliant Interface</a> »</li>
</ul>
</div>
</div>
<div class="footer" role="contentinfo">
© <a href="../../copyright.html">Copyright</a> 2016, The PyGreSQL team.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.1.
</div>
<!-- cloud_sptheme 1.4 -->
</body>
</html>
|