File: basic.rst.txt

package info (click to toggle)
pygresql 1%3A5.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,432 kB
  • sloc: python: 13,318; ansic: 4,984; makefile: 164
file content (360 lines) | stat: -rw-r--r-- 12,386 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
Basic examples
==============

.. py:currentmodule:: pg

In this section, we demonstrate how to use some of the very basic features
of PostgreSQL using the classic PyGreSQL interface.

Creating a connection to the database
-------------------------------------

We start by creating a **connection** to the PostgreSQL database::

    >>> from pg import DB
    >>> db = DB()

If you pass no parameters when creating the :class:`DB` instance, then
PyGreSQL will try to connect to the database on the local host that has
the same name as the current user, and also use that name for login.

You can also pass the database name, host, port and login information
as parameters when creating the :class:`DB` instance::

    >>> db = DB(dbname='testdb', host='pgserver', port=5432,
    ...     user='scott', passwd='tiger')

The :class:`DB` class of which ``db`` is an object is a wrapper around
the lower level :class:`Connection` class of the :mod:`pg` module.
The most important method of such connection objects is the ``query``
method that allows you to send SQL commands to the database.

Creating tables
---------------

The first thing you would want to do in an empty database is creating a
table. To do this, you need to send a **CREATE TABLE** command to the
database. PostgreSQL has its own set of built-in types that can be used
for the table columns. Let us create two tables "weather" and "cities"::

    >>> db.query("""CREATE TABLE weather (
    ...     city varchar(80),
    ...     temp_lo int, temp_hi int,
    ...     prcp float8,
    ...     date date)""")
    >>> db.query("""CREATE TABLE cities (
    ...     name varchar(80),
    ...     location point)""")

.. note::
    Keywords are case-insensitive but identifiers are case-sensitive.

You can get a list of all tables in the database with::

    >>> db.get_tables()
    ['public.cities', 'public.weather']


Insert data
-----------

Now we want to fill our tables with data. An **INSERT** statement is used
to insert a new row into a table. There are several ways you can specify
what columns the data should go to.

Let us insert a row into each of these tables. The simplest case is when
the list of values corresponds to the order of the columns specified in the
CREATE TABLE command::

    >>> db.query("""INSERT INTO weather
    ...     VALUES ('San Francisco', 46, 50, 0.25, '11/27/1994')""")
    >>> db.query("""INSERT INTO cities
    ...     VALUES ('San Francisco', '(-194.0, 53.0)')""")

You can also specify what column the values correspond to. The columns can
be specified in any order. You may also omit any number of columns,
unknown precipitation below::

    >>> db.query("""INSERT INTO weather (date, city, temp_hi, temp_lo)
    ...     VALUES ('11/29/1994', 'Hayward', 54, 37)""")


If you get errors regarding the format of the date values, your database
is probably set to a different date style. In this case you must change
the date style like this::

    >>> db.query("set datestyle = MDY")

Instead of explicitly writing the INSERT statement and sending it to the
database with the :meth:`DB.query` method, you can also use the more
convenient :meth:`DB.insert` method that does the same under the hood::

    >>> db.insert('weather',
    ...     date='11/29/1994', city='Hayward', temp_hi=54, temp_lo=37)

And instead of using keyword parameters, you can also pass the values
to the :meth:`DB.insert` method in a single Python dictionary.

If you have a Python list with many rows that shall be used to fill
a database table quickly, you can use the :meth:`DB.inserttable` method.

Retrieving data
---------------

After having entered some data into our tables, let's see how we can get
the data out again. A **SELECT** statement is used for retrieving data.
The basic syntax is:

.. code-block:: psql

    SELECT columns FROM tables WHERE predicates

A simple one would be the following query::

    >>> q = db.query("SELECT * FROM weather")
    >>> print(q)
        city     |temp_lo|temp_hi|prcp|   date
    -------------+-------+-------+----+----------
    San Francisco|     46|     50|0.25|1994-11-27
    Hayward      |     37|     54|    |1994-11-29
    (2 rows)

You may also specify expressions in the target list.
(The 'AS column' specifies the column name of the result. It is optional.)

::

    >>> print(db.query("""SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date
    ...     FROM weather"""))
        city     |temp_avg|   date
    -------------+--------+----------
    San Francisco|      48|1994-11-27
    Hayward      |      45|1994-11-29
    (2 rows)

If you want to retrieve rows that satisfy certain condition (i.e. a
restriction), specify the condition in a WHERE clause. The following
retrieves the weather of San Francisco on rainy days::

    >>> print(db.query("""SELECT * FROM weather
    ...     WHERE city = 'San Francisco' AND prcp > 0.0"""))
        city     |temp_lo|temp_hi|prcp|   date
    -------------+-------+-------+----+----------
    San Francisco|     46|     50|0.25|1994-11-27
    (1 row)

Here is a more complicated one. Duplicates are removed when DISTINCT is
specified. ORDER BY specifies the column to sort on. (Just to make sure the
following won't confuse you, DISTINCT and ORDER BY can be used separately.)

::

    >>> print(db.query("SELECT DISTINCT city FROM weather ORDER BY city"))
        city
    -------------
    Hayward
    San Francisco
    (2 rows)

So far we have only printed the output of a SELECT query. The object that is
returned by the query is an instance of the :class:`Query` class that can print
itself in the nicely formatted way we saw above. But you can also retrieve the
results as a list of tuples, by using the :meth:`Query.getresult` method::

    >>> from pprint import pprint
    >>> q = db.query("SELECT * FROM weather")
    >>> pprint(q.getresult())
    [('San Francisco', 46, 50, 0.25, '1994-11-27'),
     ('Hayward', 37, 54, None, '1994-11-29')]

Here we used pprint to print out the returned list in a nicely formatted way.

If you want to retrieve the results as a list of dictionaries instead of
tuples, use the :meth:`Query.dictresult` method instead::

    >>> pprint(q.dictresult())
    [{'city': 'San Francisco',
      'date': '1994-11-27',
      'prcp': 0.25,
      'temp_hi': 50,
      'temp_lo': 46},
     {'city': 'Hayward',
      'date': '1994-11-29',
      'prcp': None,
      'temp_hi': 54,
      'temp_lo': 37}]

Finally, you can also retrieve the results as a list of named tuples, using
the :meth:`Query.namedresult` method. This can be a good compromise between
simple tuples and the more memory intensive dictionaries:

    >>> for row in q.namedresult():
    ...     print(row.city, row.date)
    ...
    San Francisco 1994-11-27
    Hayward 1994-11-29

If you only want to retrieve a single row of data, you can use the more
convenient :meth:`DB.get` method that does the same under the hood::

    >>> d = dict(city='Hayward')
    >>> db.get('weather', d, 'city')
    >>> pprint(d)
    {'city': 'Hayward',
     'date': '1994-11-29',
     'prcp': None,
     'temp_hi': 54,
     'temp_lo': 37}

As you see, the :meth:`DB.get` method returns a dictionary with the column
names as keys. In the third parameter you can specify which column should
be looked up in the WHERE statement of the SELECT statement that is executed
by the :meth:`DB.get` method. You normally don't need it when the table was
created with a primary key.

Retrieving data into other tables
---------------------------------

A SELECT ... INTO statement can be used to retrieve data into another table::

    >>> db.query("""SELECT * INTO TEMPORARY TABLE temptab FROM weather
    ...     WHERE city = 'San Francisco' and prcp > 0.0""")

This fills a temporary table "temptab" with a subset of the data in the
original "weather" table. It can be listed with::

    >>> print(db.query("SELECT * from temptab"))
        city     |temp_lo|temp_hi|prcp|   date
    -------------+-------+-------+----+----------
    San Francisco|     46|     50|0.25|1994-11-27
    (1 row)

Aggregates
----------

Let's try the following query::

    >>> print(db.query("SELECT max(temp_lo) FROM weather"))
    max
    ---
     46
    (1 row)

You can also use aggregates with the GROUP BY clause::

    >>> print(db.query("SELECT city, max(temp_lo) FROM weather GROUP BY city"))
        city     |max
    -------------+---
    Hayward      | 37
    San Francisco| 46
    (2 rows)

Joining tables
--------------

Queries can access multiple tables at once or access the same table in such a
way that multiple instances of the table are being processed at the same time.

Suppose we want to find all the records that are in the temperature range of
other records. W1 and W2 are aliases for weather. We can use the following
query to achieve that::

    >>> print(db.query("""SELECT W1.city, W1.temp_lo, W1.temp_hi,
    ...     W2.city, W2.temp_lo, W2.temp_hi FROM weather W1, weather W2
    ...     WHERE W1.temp_lo < W2.temp_lo and W1.temp_hi > W2.temp_hi"""))
     city  |temp_lo|temp_hi|    city     |temp_lo|temp_hi
    -------+-------+-------+-------------+-------+-------
    Hayward|     37|     54|San Francisco|     46|     50
    (1 row)

Now let's join two tables. The following joins the "weather" table and the
"cities" table::

    >>> print(db.query("""SELECT city, location, prcp, date
    ...     FROM weather, cities
    ...     WHERE name = city"""))
        city     |location |prcp|   date
    -------------+---------+----+----------
    San Francisco|(-194,53)|0.25|1994-11-27
    (1 row)

Since the column names are all different, we don't have to specify the table
name. If you want to be clear, you can do the following. They give identical
results, of course::

    >>> print(db.query("""SELECT w.city, c.location, w.prcp, w.date
    ...     FROM weather w, cities c WHERE c.name = w.city"""))
        city     |location |prcp|   date
    -------------+---------+----+----------
    San Francisco|(-194,53)|0.25|1994-11-27
    (1 row)

Updating data
-------------

It you want to change the data that has already been inserted into a database
table, you will need the **UPDATE** statement.

Suppose you discover the temperature readings are all off by 2 degrees as of
Nov 28, you may update the data as follow::

    >>> db.query("""UPDATE weather
    ...     SET temp_hi = temp_hi - 2,  temp_lo = temp_lo - 2
    ...     WHERE date > '11/28/1994'""")
    '1'
    >>> print(db.query("SELECT * from weather"))
        city     |temp_lo|temp_hi|prcp|   date
    -------------+-------+-------+----+----------
    San Francisco|     46|     50|0.25|1994-11-27
    Hayward      |     35|     52|    |1994-11-29
    (2 rows)

Note that the UPDATE statement returned the string ``'1'``, indicating that
exactly one row of data has been affected by the update.

If you retrieved one row of data as a dictionary using the :meth:`DB.get`
method, then you can also update that row with the :meth:`DB.update` method.

Deleting data
-------------

To delete rows from a table, a **DELETE** statement can be used.

Suppose you are no longer interested in the weather of Hayward, you can do
the following to delete those rows from the table::

    >>> db.query("DELETE FROM weather WHERE city = 'Hayward'")
    '1'

Again, you get the string ``'1'`` as return value, indicating that exactly
one row of data has been deleted.

You can also delete all the rows in a table by doing the following.
This is different from DROP TABLE which removes the table itself in addition
to the removing the rows, as explained in the next section.

::

    >>> db.query("DELETE FROM weather")
    '1'
    >>> print(db.query("SELECT * from weather"))
    city|temp_lo|temp_hi|prcp|date
    ----+-------+-------+----+----
    (0 rows)

Since only one row was left in the table, the DELETE query again returns the
string ``'1'``. The SELECT query now gives an empty result.

If you retrieved a row of data as a dictionary using the :meth:`DB.get`
method, then you can also delete that row with the :meth:`DB.delete` method.


Removing the tables
-------------------
The **DROP TABLE** command is used to remove tables. After you have done this,
you can no longer use those tables::

    >>> db.query("DROP TABLE weather, cities")
    >>> db.query("select * from weather")
    pg.ProgrammingError: Error:  Relation "weather" does not exist