1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
API
===
Example usage
-------------
from the python interpreter prompt, import the package:
>>> import pygrib
open a GRIB file, create a grib message iterator:
>>> grbs = pygrib.open('sampledata/flux.grb')
pygrib open instances behave like regular python file objects, with
``seek``, ``tell``, ``read``, ``readline`` and ``close`` methods, except
that offsets are measured in grib messages instead of bytes:
>>> grbs.seek(2)
>>> grbs.tell()
2
>>> grb = grbs.read(1)[0] # read returns a list with the next N (N=1 in this case) messages.
>>> grb # printing a grib message object displays summary info
3:Maximum temperature:K (instant):regular_gg:heightAboveGround:level 2 m:fcst time 108-120 hrs:from 200402291200
>>> grbs.tell()
3
print an inventory of the file:
>>> grbs.seek(0)
>>> for grb in grbs:
>>> grb
1:Precipitation rate:kg m**-2 s**-1 (avg):regular_gg:surface:level 0:fcst time 108-120 hrs (avg):from 200402291200
2:Surface pressure:Pa (instant):regular_gg:surface:level 0:fcst time 120 hrs:from 200402291200
3:Maximum temperature:K (instant):regular_gg:heightAboveGround:level 2 m:fcst time 108-120 hrs:from 200402291200
4:Minimum temperature:K (instant):regular_gg:heightAboveGround:level 2 m:fcst time 108-120 hrs:from 200402291200
find the first grib message with a matching name:
>>> grb = grbs.select(name='Maximum temperature')[0]
extract the data values using the ``values`` key (``grb.keys()`` will return a list of the available keys):
>>> maxt = grb.values # same as grb['values']
# The data is returned as a numpy array, or if missing values or a bitmap
# are present, a numpy masked array. Reduced lat/lon or gaussian grid
# data is automatically expanded to a regular grid. Details of the internal
# representation of the grib data (such as the scanning mode) are handled
# automatically.
>>> maxt.shape, maxt.min(), maxt.max()
(94, 192) 223.7 319.9
get the latitudes and longitudes of the grid:
>>> lats, lons = grb.latlons()
>>> lats.shape, lats.min(), lats.max(), lons.shape, lons.min(), lons.max()
(94, 192) -88.5419501373 88.5419501373 0.0 358.125
get the second grib message:
>>> grb = grbs.message(2) # same as grbs.seek(1); grb=grbs.readline()
>>> grb
2:Surface pressure:Pa (instant):regular_gg:surface:level 0:fcst time 120 hrs:from 200402291200
extract data and get lat/lon values for a subset over North America:
>>> data, lats, lons = grb.data(lat1=20,lat2=70,lon1=220,lon2=320)
>>> data.shape, lats.min(), lats.max(), lons.min(), lons.max()
(26, 53) 21.904439458 69.5216630593 221.25 318.75
modify the values associated with existing keys:
>>> grb['forecastTime'] = 240
>>> grb.dataDate = 20100101
get the binary string associated with the coded message:
>>> msg = grb.tostring()
>>> grbs.close() # close the grib file.
write the modified message to a new GRIB file:
>>> grbout = open('test.grb','wb')
>>> grbout.write(msg)
>>> grbout.close()
>>> pygrib.open('test.grb').readline()
1:Surface pressure:Pa (instant):regular_gg:surface:level 0:fcst time 240 hrs:from 201001011200
Module docstrings
-----------------
.. automodule:: pygrib
:members: open, gribmessage, index, gaulats, julian_to_datetime, reload, setdates, fromstring, multi_support_off,multi_support_on, tolerate_badgrib_off, tolerate_badgrib_on, set_definitions_path, get_definitions_path
:show-inheritance:
|