File: wavelets.cu

package info (click to toggle)
pyhst2 2020c-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bullseye
  • size: 12,532 kB
  • sloc: ansic: 11,807; python: 9,663; cpp: 6,786; makefile: 147; sh: 31
file content (452 lines) | stat: -rw-r--r-- 16,457 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#include<string.h>
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
#include<math_constants.h>
#include <cuda.h>
#include <cublas.h>
#include <cuComplex.h>
#include<time.h>



/// ****************************************************************************
/// ******************** Code from other files  ********************************
/// ****************************************************************************


#define FROMCU
extern "C" {
#include<CCspace.h>
}
#  define CUDACHECK \
{ cudaThreadSynchronize(); \
  cudaError_t last = cudaGetLastError();\
  if(last!=cudaSuccess) {\
  printf("ERRORX: %s  %s  %i \n", cudaGetErrorString( last),    __FILE__, __LINE__    );    \
  exit(1);\
  }\
}

#define WKSIZE 256
#define fftbunch 128
#define blsize_cufft 32

#  define CUDA_SAFE_CALL_NO_SYNC( call) {                                    \
  cudaError err = call;                                                    \
  if( cudaSuccess != err) {                                                \
  fprintf(stderr, "Cuda error in file '%s' in line %i : %s.\n",        \
  __FILE__, __LINE__, cudaGetErrorString( err) );              \
  exit(EXIT_FAILURE);                                                  \
  } }

#  define CUDA_SAFE_CALL( call)     CUDA_SAFE_CALL_NO_SYNC(call);                                            \


#include <cufft.h>
#define CUDA_SAFE_FFT(call){                                                   \
  cufftResult err = call;                                                    \
  if( CUFFT_SUCCESS != err) {                                                \
  fprintf(stderr, "Cuda error in file '%s' in line %i : %d.\n",          \
  __FILE__, __LINE__, err );                                     \
  exit(EXIT_FAILURE);                                                    \
  } }


typedef struct ParamsForTomo {
  Gpu_Context *ctxstruct;
  float DETECTOR_DUTY_RATIO;
  int DETECTOR_DUTY_OVERSAMPLING;
} ParamsForTomo ;


extern float* global_sino_tmp;
extern float* global_slice_tmp;


int iDivUp(int a, int b);

int nextpow2_cp_padded(int v);

int nextpow2_cp(int v);

void proj_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image, int dimslice);

void backproj_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image, float *d_sino_tmp=NULL);

__global__  void cp_kern_compute_discrete_ramp(int length, cufftReal* oArray);

cufftComplex* cp_compute_discretized_ramp_filter(int length, cufftReal* d_r, cufftComplex* d_i, cufftHandle myplan);

__global__ void cp_kern_fourier_filter(cufftComplex* inArray, cufftComplex* filter, int sizeX, int sizeY);

__global__  void add_rings_to_sinogram_kernel(float *sino, float* rings, float alpha_rings, int num_bins, int nprojs_span);


#include "pdwt/src/wt.h"



/// ****************************************************************************
/// ******************** Other kernels and calls *******************************
/// ****************************************************************************


/// Transpose of add_rings_to_sinogram_kernel
__global__  void reduce_sinogram_to_rings_kernel(float *sino, float* rings, float alpha_rings, int num_bins, int nprojs_span) {
  int gidx = threadIdx.x + blockIdx.x*blockDim.x;
  if (gidx >= num_bins) return;
  float acc_x = 0;
  for (int i = 0; i < nprojs_span; i++) {
    acc_x += sino[i*num_bins +gidx];
  }
  rings[gidx] = alpha_rings * acc_x;
}


void call_add_rings_to_sinogram(float* d_sino, float* d_rings, float alpha_rings, int num_bins, int nprojs_span) {
  // 2D grid and block
  dim3 blk= dim3( blsize_cufft , blsize_cufft , 1 );
  dim3 grd_rings2 = dim3(iDivUp(num_bins ,blsize_cufft), iDivUp(nprojs_span, blsize_cufft), 1);
  add_rings_to_sinogram_kernel<<<grd_rings2, blk>>>(d_sino, d_rings, alpha_rings, num_bins, nprojs_span);

}

void call_reduce_sinogram_to_rings(float* d_sino, float* d_rings, float alpha_rings, int num_bins, int nprojs_span) {
  // 1D grid and block for "reduction"
  dim3 blk= dim3( blsize_cufft , 1 , 1 );
  dim3 grd_rings = dim3(iDivUp(num_bins ,blsize_cufft), 1, 1);
  reduce_sinogram_to_rings_kernel<<<grd_rings, blk>>>(d_sino, d_rings, alpha_rings, num_bins, nprojs_span);
}


__global__  void soft_threshold_1D_kernel(float* rings, int num_bins, float beta) {
  int gidx = threadIdx.x + blockIdx.x*blockDim.x;
  if (gidx >= num_bins) return;
  float val = rings[gidx];
  rings[gidx] = copysignf(max(fabsf(val)-beta, 0.0f), val);
}

void call_soft_threshold_1D(float* d_rings, int num_bins, float beta) {
  // 1D grid and block
  dim3 blk= dim3( blsize_cufft , 1 , 1 );
  dim3 grd_rings = dim3(iDivUp(num_bins ,blsize_cufft), 1, 1);
  soft_threshold_1D_kernel<<<grd_rings, blk>>>(d_rings, num_bins, beta);
}






/// ****************************************************************************
/// ******************** Algorithms ********************************************
/// ****************************************************************************

#define W_VERBOSE 1
#define W_DEBUG 1


/// Calculate Lipschitz constant for analysis formulation
float w_calculate_Lipschitz(ParamsForTomo p4t, float* d_data, float* d_sino, float* d_result, int dimslice, int niter) {
  float L = 0.0f;
  backproj_wrapper(p4t, d_data, d_result);
  for (int k = 0; k < niter; k++) {
    proj_wrapper(p4t, d_sino, d_result, dimslice);
    backproj_wrapper(p4t, d_sino, d_result);
    L = cublasSnrm2(dimslice*dimslice, d_result, 1);
    cublasSscal(dimslice*dimslice, 1.0f/L, d_result, 1);
    if (W_VERBOSE && (k % 10) == 0) printf("Lipschitz (%d) %f\n", k, L);
  }
  return L;
}




/// Calculate Lipschitz constant for analysis formulation with rings variables
float w_calculate_Lipschitz_rings(ParamsForTomo p4t, float* d_data, float* d_sino, float* d_result, float* d_rings, int dimslice, int niter, float alpha_rings) {
  int num_bins = p4t.ctxstruct->num_bins;
  int num_projs = p4t.ctxstruct->nprojs_span;
  float *d_sino_tmp;
  cudaMalloc(&d_sino_tmp, num_bins*num_projs*sizeof(float));

  // Initial x, r
  backproj_wrapper(p4t, d_data, d_result, d_sino_tmp);
  // call_reduce_sinogram_to_rings(d_data, d_rings, alpha_rings, num_bins, num_projs);
  call_reduce_sinogram_to_rings(d_sino_tmp , d_rings, alpha_rings, num_bins, num_projs);
  float L = 0.0f, L_x = 0, L_r = 0;
  for (int k = 0; k < niter; k++) {
    // F(x, r) = ||P x + U r - d||_2^2
    //
    // x_n     ( P^T P   P^T U )  x_{n-1}
    //      =  (               )
    // r_n     ( U^T P   U^T U )  r_{n-1}
    proj_wrapper(p4t, d_sino, d_result, dimslice);
    call_add_rings_to_sinogram(d_sino, d_rings, alpha_rings, num_bins, num_projs);
    backproj_wrapper(p4t, d_sino, d_result, d_sino_tmp);
    call_reduce_sinogram_to_rings(d_sino_tmp, d_rings, alpha_rings, num_bins, num_projs);
    L_x = cublasSnrm2(dimslice*dimslice, d_result, 1);
    L_r = cublasSnrm2(num_bins, d_rings, 1);
    L = sqrtf(L_x*L_x + L_r*L_r);
    cublasSscal(dimslice*dimslice, 1.0f/L, d_result, 1);
    if (W_VERBOSE && (k % 10) == 0) printf("Lipschitz (%d) %f\n", k, L);
  }
  cudaFree(d_sino_tmp);
  
  return L;
}


int wavelets_fista(
    ParamsForTomo p4t,
    float* d_data,
    float* d_result,
    int niter,
    float beta,
    float beta_rings,
    float rings_height,
    float alpha_rings)
{
  // Retrieve the parameters
  int num_bins = p4t.ctxstruct->num_bins;
  int num_projs = p4t.ctxstruct->nprojs_span;
  int dimslice = p4t.ctxstruct->num_x;
  int numels_slice = dimslice*dimslice;
  float a = p4t.ctxstruct->W_FISTA_PARAM;  //Fista "a" parameter : y = x + k/(k+a) * (x - x_old)
  int nlevels = p4t.ctxstruct->W_LEVELS;
  int do_cycle_spin = p4t.ctxstruct->W_CYCLE_SPIN;
  int do_swt = p4t.ctxstruct->W_SWT;
  char* wname = p4t.ctxstruct->W_WNAME;
  int verbosity = p4t.ctxstruct->verbosity;
  int W_NORMALIZE = p4t.ctxstruct->W_NORMALIZE;
  int W_DTA = p4t.ctxstruct->W_THRESHOLD_APPCOEFFS;
  char DO_RING_CORR = (rings_height > 0.00001 ? 1 : 0);

  float* d_rings, *d_rings_old, *d_grad_rings, *d_rings2;
  if (DO_RING_CORR) {
    cudaMalloc(&d_rings, num_bins*sizeof(float));
    cudaMalloc(&d_rings2, num_bins*sizeof(float));
    cudaMalloc(&d_rings_old, num_bins*sizeof(float));
    cudaMalloc(&d_grad_rings, num_bins*sizeof(float));
  }

  if (verbosity > 2) printf("levels : %d \t cycle spin : %d \t a : %f \t dimslice : %d \n", nlevels, do_cycle_spin, a, dimslice);


  float* d_sino, *d_sino_tmp; // temp array
  cudaMalloc(&d_sino, num_bins*num_projs*sizeof(float));
  cudaMalloc(&d_sino_tmp, num_bins*num_projs*sizeof(float));
  cudaMemcpy(d_sino, d_data, num_bins*num_projs*sizeof(float), cudaMemcpyDeviceToDevice);

  float Lip = 0;
  // Calculate the Lipschitz constant : largest eigenvalue of PT*P (for analysis formulation)
  if (!DO_RING_CORR) Lip = w_calculate_Lipschitz(p4t, d_data, d_sino, d_result, dimslice, p4t.ctxstruct->LIPSCHITZ_ITERATIONS);
  // Calculate the Lipschitz constant with rings: largest singular value of [P, U]
  else Lip = w_calculate_Lipschitz_rings(p4t, d_data, d_sino, d_result, d_rings, dimslice, p4t.ctxstruct->LIPSCHITZ_ITERATIONS, alpha_rings);

  Lip *= p4t.ctxstruct->LIPSCHITZFACTOR;
  if (verbosity > 9) printf("Lipschitz = %f\n", Lip);
  CUDACHECK;
  // First, backproject the sinogram to get the initial image
  backproj_wrapper(p4t, d_data, d_result);
  // Build the wavelet structure from this image
  //Wavelets(img, Nr, Nc, wname, levels, memisonhost=1, do_separable=1, do_cycle_spinning=0, do_swt=0);
  Wavelets W(d_result, dimslice, dimslice, wname, nlevels, 0, 1, do_cycle_spin, do_swt);
  if (verbosity > 3) W.print_informations();

  // --
  float* x, *y, *grad_y, *x_old;
  y = W.d_image;
  float* energy_vector = (float*) calloc(niter-1, sizeof(float));

  cudaMalloc(&x, numels_slice*sizeof(float));
  cudaMemset(x, 0, numels_slice*sizeof(float));
  cudaMalloc(&x_old, numels_slice*sizeof(float));
  cudaMalloc(&grad_y, numels_slice*sizeof(float));
  CUDACHECK;
  float fid = 0, l1 = 0, l1_rings = 0;
  float alpha = 1.0f;
  float t = 1.0f, t_old;

  for (int k = 0; k < niter; k++) {
    // grad_y = PT(P y - d)
    proj_wrapper(p4t, d_sino, y, dimslice);
    cublasSaxpy(num_bins*num_projs, -1.0, d_data, 1, d_sino, 1);
    if (DO_RING_CORR) call_add_rings_to_sinogram(d_sino, d_rings, alpha_rings, num_bins, num_projs);
    backproj_wrapper(p4t, d_sino, grad_y, d_sino_tmp);
    if (DO_RING_CORR) call_reduce_sinogram_to_rings(d_sino_tmp, d_grad_rings, alpha_rings, num_bins, num_projs);

    // y = y - (1/L)*grad_y
    cublasSaxpy(numels_slice, -1.0/Lip, grad_y, 1, y, 1);
    if (DO_RING_CORR) cublasSaxpy(num_bins, -1.0/Lip, d_grad_rings, 1, d_rings, 1);

    // Calculate energy (of previous iteration actually)
    fid = cublasSnrm2(num_bins*num_projs, d_sino, 1);
    fid *= fid*0.5;
    l1 = W.norm1();
    if (DO_RING_CORR) l1_rings = cublasSasum(num_bins, d_rings, 1);

    // x_old = x
    cudaMemcpy(x_old, x, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice);
    if (DO_RING_CORR) cudaMemcpy(d_rings_old, d_rings2, num_bins*sizeof(float), cudaMemcpyDeviceToDevice);

    // Apply proximal operator
    W.forward();
    W.soft_threshold(beta/Lip, W_DTA, W_NORMALIZE);
    W.inverse();
    if (DO_RING_CORR) {
      call_soft_threshold_1D(d_rings, num_bins, beta_rings);
      cudaMemcpy(d_rings2, d_rings, num_bins*sizeof(float), cudaMemcpyDeviceToDevice);
    }

    // y = x + (k-1)/(k+a)*(x - x_old)  for k=1, ...
    cudaMemcpy(x, y, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice); // y is bound to W.image
    t_old = t;
    t = 0.5*(1.0 + sqrt(1 + 4*t*t));
    alpha = (t_old - 1.0)/t;
    cublasSscal(numels_slice, 1.0 + alpha, y, 1);
    cublasSaxpy(numels_slice, -alpha, x_old, 1, y, 1);
    if (DO_RING_CORR) {
      cublasSscal(num_bins, 1.0 + k/(k+1.0+a), d_rings, 1);
      cublasSaxpy(num_bins, -k/(k+1.0+a), d_rings_old, 1, d_rings, 1);
    }

    // Display energy
    if (k > 0) energy_vector[k-1] = fid + beta*l1 + beta_rings*l1_rings;
//    if (k > 50 && energy_vector[k-1] > energy_vector[k-2]) t = 1.0; // TODO: test
    if (W_VERBOSE && (k % 10) == 0) printf("It %d \t Energy %e \t Fidelity %e \t L1 %e \t Rings %e\n", k, fid + beta*l1, fid, l1, l1_rings);

  }

  cudaMemcpy(d_result, x, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice);
  if (verbosity > 2) {
    FILE* flid = fopen("energy_wavelets.dat", "wb");
    fwrite(energy_vector, sizeof(float), niter, flid);
    fclose(flid);
  }
  cudaFree(x);
  cudaFree(x_old);
  cudaFree(grad_y);
  cudaFree(d_sino);
  cudaFree(d_sino_tmp);
  if (DO_RING_CORR) {
    cudaFree(d_rings);
    cudaFree(d_rings2);
    cudaFree(d_rings_old);
    cudaFree(d_grad_rings);
  }
  free(energy_vector);

  return 0;
}








extern "C" {
  int wavelets_driver(
      Gpu_Context* self,
      float* data,
      float* SLICE,
      float DETECTOR_DUTY_RATIO,
      int DETECTOR_DUTY_OVERSAMPLING,
      float beta,
      float beta_rings,
      float rings_height,
      float alpha_rings);
}




float* w_get_device_complex(float2* d_array, int numels) {
  float2* h_array = (float2*) calloc(numels,sizeof(float2));
  CUDA_SAFE_CALL(cudaMemcpy(h_array,d_array, numels*sizeof(float), cudaMemcpyDeviceToHost));
  float* res = (float*) calloc(2*numels, sizeof(float));
  for (int i=0; i<numels; i++) {
    res[i] = h_array[i].x;
    res[i+numels] = h_array[i].y;
  }
  free(h_array);
  return res;
}
float* w_get_device_complex_abs(float2* d_array, int numels) {
  float2* h_array = (float2*) calloc(numels,sizeof(float2));
  CUDA_SAFE_CALL(cudaMemcpy(h_array,d_array, numels*sizeof(float), cudaMemcpyDeviceToHost));
  float* res = (float*) calloc(numels, sizeof(float));
  for (int i=0; i<numels; i++) {
    res[i] = sqrtf(h_array[i].x*h_array[i].x + h_array[i].y*h_array[i].y);
  }
  free(h_array);
  return res;
}








int wavelets_driver(Gpu_Context* self, float* data, float* SLICE, float DETECTOR_DUTY_RATIO, int DETECTOR_DUTY_OVERSAMPLING, float beta, float beta_rings, float rings_height, float alpha_rings) {

  if (W_VERBOSE) {
    puts("------------------------------------------------------------------------------");
    puts("------------------ Entering Wavelets driver ----------------------------------");
    puts("------------------------------------------------------------------------------");
  }
  cuCtxSetCurrent ( *((CUcontext *) self->gpuctx  ))  ;

  //Import parameters from self
  int num_bins = self->num_bins;
  int num_projs = self->nprojs_span;
  int dimslice = self->num_x ;
  ParamsForTomo p4t  =  (ParamsForTomo)  { (Gpu_Context*) self, DETECTOR_DUTY_RATIO, DETECTOR_DUTY_OVERSAMPLING } ;


  //Prepare cuFFT plan for FBP
  CUDA_SAFE_CALL(cudaMalloc(&self->precond_params_dl.d_r_sino_error, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftReal)));
  CUDA_SAFE_CALL(cudaMalloc(&self->precond_params_dl.d_i_sino_error, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftComplex)));
  static int plans_are_computed = 0;
  if(!plans_are_computed) {
      plans_are_computed = 1;
      CUDA_SAFE_FFT(cufftPlan1d((cufftHandle *) &self->precond_params_dl.planRamp_forward, nextpow2_cp_padded(num_bins),CUFFT_R2C,fftbunch));
      CUDA_SAFE_FFT(cufftPlan1d((cufftHandle *) &self->precond_params_dl.planRamp_backward,nextpow2_cp_padded(num_bins),CUFFT_C2R,fftbunch));
  }
  cufftComplex* d_i_discrete_ramp = cp_compute_discretized_ramp_filter(nextpow2_cp_padded(num_bins), self->precond_params_dl.d_r_sino_error, self->precond_params_dl.d_i_sino_error, self->precond_params_dl.planRamp_forward);
  self->precond_params_dl.filter_coeffs = d_i_discrete_ramp; //size : nextpow2(num_bins)/2+1


  // Allocate memory
  float* d_result;
  cudaMalloc(&d_result, dimslice*dimslice*sizeof(float));
  float* d_data;
  CUDA_SAFE_CALL(cudaMalloc(&d_data, num_bins*num_projs*sizeof(float)));
  CUDA_SAFE_CALL(cudaMemcpy(d_data, data,  num_bins*num_projs*sizeof(float), cudaMemcpyHostToDevice  ));
  CUDA_SAFE_CALL(cudaMalloc(&global_sino_tmp, num_bins*num_projs*sizeof(float)));
  CUDA_SAFE_CALL(cudaMalloc(&global_slice_tmp, dimslice*dimslice*sizeof(float)));


  // Run
  wavelets_fista(p4t, d_data, d_result, self->ITERATIVE_CORRECTIONS, beta, beta_rings, rings_height, alpha_rings);
  cudaMemcpy(SLICE, d_result, dimslice*dimslice*sizeof(float), cudaMemcpyDeviceToHost);

  // Free memory
  cudaFree(d_result);
  cudaFree(d_data);
  cudaFree(self->precond_params_dl.d_r_sino_error);
  cudaFree(self->precond_params_dl.d_i_sino_error);
  cudaFree(global_sino_tmp);
  cudaFree(global_slice_tmp);
  CUDACHECK;

  return 0;
}