1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
#include<string.h>
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
#include<math_constants.h>
#include <cuda.h>
#include <cublas.h>
#include <cuComplex.h>
#include<time.h>
/// ****************************************************************************
/// ******************** Code from other files ********************************
/// ****************************************************************************
#define FROMCU
extern "C" {
#include<CCspace.h>
}
# define CUDACHECK \
{ cudaThreadSynchronize(); \
cudaError_t last = cudaGetLastError();\
if(last!=cudaSuccess) {\
printf("ERRORX: %s %s %i \n", cudaGetErrorString( last), __FILE__, __LINE__ ); \
exit(1);\
}\
}
#define WKSIZE 256
#define fftbunch 128
#define blsize_cufft 32
# define CUDA_SAFE_CALL_NO_SYNC( call) { \
cudaError err = call; \
if( cudaSuccess != err) { \
fprintf(stderr, "Cuda error in file '%s' in line %i : %s.\n", \
__FILE__, __LINE__, cudaGetErrorString( err) ); \
exit(EXIT_FAILURE); \
} }
# define CUDA_SAFE_CALL( call) CUDA_SAFE_CALL_NO_SYNC(call); \
#include <cufft.h>
#define CUDA_SAFE_FFT(call){ \
cufftResult err = call; \
if( CUFFT_SUCCESS != err) { \
fprintf(stderr, "Cuda error in file '%s' in line %i : %d.\n", \
__FILE__, __LINE__, err ); \
exit(EXIT_FAILURE); \
} }
typedef struct ParamsForTomo {
Gpu_Context *ctxstruct;
float DETECTOR_DUTY_RATIO;
int DETECTOR_DUTY_OVERSAMPLING;
} ParamsForTomo ;
extern float* global_sino_tmp;
extern float* global_slice_tmp;
int iDivUp(int a, int b);
int nextpow2_cp_padded(int v);
int nextpow2_cp(int v);
void proj_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image, int dimslice);
void backproj_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image, float *d_sino_tmp=NULL);
__global__ void cp_kern_compute_discrete_ramp(int length, cufftReal* oArray);
cufftComplex* cp_compute_discretized_ramp_filter(int length, cufftReal* d_r, cufftComplex* d_i, cufftHandle myplan);
__global__ void cp_kern_fourier_filter(cufftComplex* inArray, cufftComplex* filter, int sizeX, int sizeY);
__global__ void add_rings_to_sinogram_kernel(float *sino, float* rings, float alpha_rings, int num_bins, int nprojs_span);
#include "pdwt/src/wt.h"
/// ****************************************************************************
/// ******************** Other kernels and calls *******************************
/// ****************************************************************************
/// Transpose of add_rings_to_sinogram_kernel
__global__ void reduce_sinogram_to_rings_kernel(float *sino, float* rings, float alpha_rings, int num_bins, int nprojs_span) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
if (gidx >= num_bins) return;
float acc_x = 0;
for (int i = 0; i < nprojs_span; i++) {
acc_x += sino[i*num_bins +gidx];
}
rings[gidx] = alpha_rings * acc_x;
}
void call_add_rings_to_sinogram(float* d_sino, float* d_rings, float alpha_rings, int num_bins, int nprojs_span) {
// 2D grid and block
dim3 blk= dim3( blsize_cufft , blsize_cufft , 1 );
dim3 grd_rings2 = dim3(iDivUp(num_bins ,blsize_cufft), iDivUp(nprojs_span, blsize_cufft), 1);
add_rings_to_sinogram_kernel<<<grd_rings2, blk>>>(d_sino, d_rings, alpha_rings, num_bins, nprojs_span);
}
void call_reduce_sinogram_to_rings(float* d_sino, float* d_rings, float alpha_rings, int num_bins, int nprojs_span) {
// 1D grid and block for "reduction"
dim3 blk= dim3( blsize_cufft , 1 , 1 );
dim3 grd_rings = dim3(iDivUp(num_bins ,blsize_cufft), 1, 1);
reduce_sinogram_to_rings_kernel<<<grd_rings, blk>>>(d_sino, d_rings, alpha_rings, num_bins, nprojs_span);
}
__global__ void soft_threshold_1D_kernel(float* rings, int num_bins, float beta) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
if (gidx >= num_bins) return;
float val = rings[gidx];
rings[gidx] = copysignf(max(fabsf(val)-beta, 0.0f), val);
}
void call_soft_threshold_1D(float* d_rings, int num_bins, float beta) {
// 1D grid and block
dim3 blk= dim3( blsize_cufft , 1 , 1 );
dim3 grd_rings = dim3(iDivUp(num_bins ,blsize_cufft), 1, 1);
soft_threshold_1D_kernel<<<grd_rings, blk>>>(d_rings, num_bins, beta);
}
/// ****************************************************************************
/// ******************** Algorithms ********************************************
/// ****************************************************************************
#define W_VERBOSE 1
#define W_DEBUG 1
/// Calculate Lipschitz constant for analysis formulation
float w_calculate_Lipschitz(ParamsForTomo p4t, float* d_data, float* d_sino, float* d_result, int dimslice, int niter) {
float L = 0.0f;
backproj_wrapper(p4t, d_data, d_result);
for (int k = 0; k < niter; k++) {
proj_wrapper(p4t, d_sino, d_result, dimslice);
backproj_wrapper(p4t, d_sino, d_result);
L = cublasSnrm2(dimslice*dimslice, d_result, 1);
cublasSscal(dimslice*dimslice, 1.0f/L, d_result, 1);
if (W_VERBOSE && (k % 10) == 0) printf("Lipschitz (%d) %f\n", k, L);
}
return L;
}
/// Calculate Lipschitz constant for analysis formulation with rings variables
float w_calculate_Lipschitz_rings(ParamsForTomo p4t, float* d_data, float* d_sino, float* d_result, float* d_rings, int dimslice, int niter, float alpha_rings) {
int num_bins = p4t.ctxstruct->num_bins;
int num_projs = p4t.ctxstruct->nprojs_span;
float *d_sino_tmp;
cudaMalloc(&d_sino_tmp, num_bins*num_projs*sizeof(float));
// Initial x, r
backproj_wrapper(p4t, d_data, d_result, d_sino_tmp);
// call_reduce_sinogram_to_rings(d_data, d_rings, alpha_rings, num_bins, num_projs);
call_reduce_sinogram_to_rings(d_sino_tmp , d_rings, alpha_rings, num_bins, num_projs);
float L = 0.0f, L_x = 0, L_r = 0;
for (int k = 0; k < niter; k++) {
// F(x, r) = ||P x + U r - d||_2^2
//
// x_n ( P^T P P^T U ) x_{n-1}
// = ( )
// r_n ( U^T P U^T U ) r_{n-1}
proj_wrapper(p4t, d_sino, d_result, dimslice);
call_add_rings_to_sinogram(d_sino, d_rings, alpha_rings, num_bins, num_projs);
backproj_wrapper(p4t, d_sino, d_result, d_sino_tmp);
call_reduce_sinogram_to_rings(d_sino_tmp, d_rings, alpha_rings, num_bins, num_projs);
L_x = cublasSnrm2(dimslice*dimslice, d_result, 1);
L_r = cublasSnrm2(num_bins, d_rings, 1);
L = sqrtf(L_x*L_x + L_r*L_r);
cublasSscal(dimslice*dimslice, 1.0f/L, d_result, 1);
if (W_VERBOSE && (k % 10) == 0) printf("Lipschitz (%d) %f\n", k, L);
}
cudaFree(d_sino_tmp);
return L;
}
int wavelets_fista(
ParamsForTomo p4t,
float* d_data,
float* d_result,
int niter,
float beta,
float beta_rings,
float rings_height,
float alpha_rings)
{
// Retrieve the parameters
int num_bins = p4t.ctxstruct->num_bins;
int num_projs = p4t.ctxstruct->nprojs_span;
int dimslice = p4t.ctxstruct->num_x;
int numels_slice = dimslice*dimslice;
float a = p4t.ctxstruct->W_FISTA_PARAM; //Fista "a" parameter : y = x + k/(k+a) * (x - x_old)
int nlevels = p4t.ctxstruct->W_LEVELS;
int do_cycle_spin = p4t.ctxstruct->W_CYCLE_SPIN;
int do_swt = p4t.ctxstruct->W_SWT;
char* wname = p4t.ctxstruct->W_WNAME;
int verbosity = p4t.ctxstruct->verbosity;
int W_NORMALIZE = p4t.ctxstruct->W_NORMALIZE;
int W_DTA = p4t.ctxstruct->W_THRESHOLD_APPCOEFFS;
char DO_RING_CORR = (rings_height > 0.00001 ? 1 : 0);
float* d_rings, *d_rings_old, *d_grad_rings, *d_rings2;
if (DO_RING_CORR) {
cudaMalloc(&d_rings, num_bins*sizeof(float));
cudaMalloc(&d_rings2, num_bins*sizeof(float));
cudaMalloc(&d_rings_old, num_bins*sizeof(float));
cudaMalloc(&d_grad_rings, num_bins*sizeof(float));
}
if (verbosity > 2) printf("levels : %d \t cycle spin : %d \t a : %f \t dimslice : %d \n", nlevels, do_cycle_spin, a, dimslice);
float* d_sino, *d_sino_tmp; // temp array
cudaMalloc(&d_sino, num_bins*num_projs*sizeof(float));
cudaMalloc(&d_sino_tmp, num_bins*num_projs*sizeof(float));
cudaMemcpy(d_sino, d_data, num_bins*num_projs*sizeof(float), cudaMemcpyDeviceToDevice);
float Lip = 0;
// Calculate the Lipschitz constant : largest eigenvalue of PT*P (for analysis formulation)
if (!DO_RING_CORR) Lip = w_calculate_Lipschitz(p4t, d_data, d_sino, d_result, dimslice, p4t.ctxstruct->LIPSCHITZ_ITERATIONS);
// Calculate the Lipschitz constant with rings: largest singular value of [P, U]
else Lip = w_calculate_Lipschitz_rings(p4t, d_data, d_sino, d_result, d_rings, dimslice, p4t.ctxstruct->LIPSCHITZ_ITERATIONS, alpha_rings);
Lip *= p4t.ctxstruct->LIPSCHITZFACTOR;
if (verbosity > 9) printf("Lipschitz = %f\n", Lip);
CUDACHECK;
// First, backproject the sinogram to get the initial image
backproj_wrapper(p4t, d_data, d_result);
// Build the wavelet structure from this image
//Wavelets(img, Nr, Nc, wname, levels, memisonhost=1, do_separable=1, do_cycle_spinning=0, do_swt=0);
Wavelets W(d_result, dimslice, dimslice, wname, nlevels, 0, 1, do_cycle_spin, do_swt);
if (verbosity > 3) W.print_informations();
// --
float* x, *y, *grad_y, *x_old;
y = W.d_image;
float* energy_vector = (float*) calloc(niter-1, sizeof(float));
cudaMalloc(&x, numels_slice*sizeof(float));
cudaMemset(x, 0, numels_slice*sizeof(float));
cudaMalloc(&x_old, numels_slice*sizeof(float));
cudaMalloc(&grad_y, numels_slice*sizeof(float));
CUDACHECK;
float fid = 0, l1 = 0, l1_rings = 0;
float alpha = 1.0f;
float t = 1.0f, t_old;
for (int k = 0; k < niter; k++) {
// grad_y = PT(P y - d)
proj_wrapper(p4t, d_sino, y, dimslice);
cublasSaxpy(num_bins*num_projs, -1.0, d_data, 1, d_sino, 1);
if (DO_RING_CORR) call_add_rings_to_sinogram(d_sino, d_rings, alpha_rings, num_bins, num_projs);
backproj_wrapper(p4t, d_sino, grad_y, d_sino_tmp);
if (DO_RING_CORR) call_reduce_sinogram_to_rings(d_sino_tmp, d_grad_rings, alpha_rings, num_bins, num_projs);
// y = y - (1/L)*grad_y
cublasSaxpy(numels_slice, -1.0/Lip, grad_y, 1, y, 1);
if (DO_RING_CORR) cublasSaxpy(num_bins, -1.0/Lip, d_grad_rings, 1, d_rings, 1);
// Calculate energy (of previous iteration actually)
fid = cublasSnrm2(num_bins*num_projs, d_sino, 1);
fid *= fid*0.5;
l1 = W.norm1();
if (DO_RING_CORR) l1_rings = cublasSasum(num_bins, d_rings, 1);
// x_old = x
cudaMemcpy(x_old, x, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice);
if (DO_RING_CORR) cudaMemcpy(d_rings_old, d_rings2, num_bins*sizeof(float), cudaMemcpyDeviceToDevice);
// Apply proximal operator
W.forward();
W.soft_threshold(beta/Lip, W_DTA, W_NORMALIZE);
W.inverse();
if (DO_RING_CORR) {
call_soft_threshold_1D(d_rings, num_bins, beta_rings);
cudaMemcpy(d_rings2, d_rings, num_bins*sizeof(float), cudaMemcpyDeviceToDevice);
}
// y = x + (k-1)/(k+a)*(x - x_old) for k=1, ...
cudaMemcpy(x, y, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice); // y is bound to W.image
t_old = t;
t = 0.5*(1.0 + sqrt(1 + 4*t*t));
alpha = (t_old - 1.0)/t;
cublasSscal(numels_slice, 1.0 + alpha, y, 1);
cublasSaxpy(numels_slice, -alpha, x_old, 1, y, 1);
if (DO_RING_CORR) {
cublasSscal(num_bins, 1.0 + k/(k+1.0+a), d_rings, 1);
cublasSaxpy(num_bins, -k/(k+1.0+a), d_rings_old, 1, d_rings, 1);
}
// Display energy
if (k > 0) energy_vector[k-1] = fid + beta*l1 + beta_rings*l1_rings;
// if (k > 50 && energy_vector[k-1] > energy_vector[k-2]) t = 1.0; // TODO: test
if (W_VERBOSE && (k % 10) == 0) printf("It %d \t Energy %e \t Fidelity %e \t L1 %e \t Rings %e\n", k, fid + beta*l1, fid, l1, l1_rings);
}
cudaMemcpy(d_result, x, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice);
if (verbosity > 2) {
FILE* flid = fopen("energy_wavelets.dat", "wb");
fwrite(energy_vector, sizeof(float), niter, flid);
fclose(flid);
}
cudaFree(x);
cudaFree(x_old);
cudaFree(grad_y);
cudaFree(d_sino);
cudaFree(d_sino_tmp);
if (DO_RING_CORR) {
cudaFree(d_rings);
cudaFree(d_rings2);
cudaFree(d_rings_old);
cudaFree(d_grad_rings);
}
free(energy_vector);
return 0;
}
extern "C" {
int wavelets_driver(
Gpu_Context* self,
float* data,
float* SLICE,
float DETECTOR_DUTY_RATIO,
int DETECTOR_DUTY_OVERSAMPLING,
float beta,
float beta_rings,
float rings_height,
float alpha_rings);
}
float* w_get_device_complex(float2* d_array, int numels) {
float2* h_array = (float2*) calloc(numels,sizeof(float2));
CUDA_SAFE_CALL(cudaMemcpy(h_array,d_array, numels*sizeof(float), cudaMemcpyDeviceToHost));
float* res = (float*) calloc(2*numels, sizeof(float));
for (int i=0; i<numels; i++) {
res[i] = h_array[i].x;
res[i+numels] = h_array[i].y;
}
free(h_array);
return res;
}
float* w_get_device_complex_abs(float2* d_array, int numels) {
float2* h_array = (float2*) calloc(numels,sizeof(float2));
CUDA_SAFE_CALL(cudaMemcpy(h_array,d_array, numels*sizeof(float), cudaMemcpyDeviceToHost));
float* res = (float*) calloc(numels, sizeof(float));
for (int i=0; i<numels; i++) {
res[i] = sqrtf(h_array[i].x*h_array[i].x + h_array[i].y*h_array[i].y);
}
free(h_array);
return res;
}
int wavelets_driver(Gpu_Context* self, float* data, float* SLICE, float DETECTOR_DUTY_RATIO, int DETECTOR_DUTY_OVERSAMPLING, float beta, float beta_rings, float rings_height, float alpha_rings) {
if (W_VERBOSE) {
puts("------------------------------------------------------------------------------");
puts("------------------ Entering Wavelets driver ----------------------------------");
puts("------------------------------------------------------------------------------");
}
cuCtxSetCurrent ( *((CUcontext *) self->gpuctx )) ;
//Import parameters from self
int num_bins = self->num_bins;
int num_projs = self->nprojs_span;
int dimslice = self->num_x ;
ParamsForTomo p4t = (ParamsForTomo) { (Gpu_Context*) self, DETECTOR_DUTY_RATIO, DETECTOR_DUTY_OVERSAMPLING } ;
//Prepare cuFFT plan for FBP
CUDA_SAFE_CALL(cudaMalloc(&self->precond_params_dl.d_r_sino_error, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftReal)));
CUDA_SAFE_CALL(cudaMalloc(&self->precond_params_dl.d_i_sino_error, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftComplex)));
static int plans_are_computed = 0;
if(!plans_are_computed) {
plans_are_computed = 1;
CUDA_SAFE_FFT(cufftPlan1d((cufftHandle *) &self->precond_params_dl.planRamp_forward, nextpow2_cp_padded(num_bins),CUFFT_R2C,fftbunch));
CUDA_SAFE_FFT(cufftPlan1d((cufftHandle *) &self->precond_params_dl.planRamp_backward,nextpow2_cp_padded(num_bins),CUFFT_C2R,fftbunch));
}
cufftComplex* d_i_discrete_ramp = cp_compute_discretized_ramp_filter(nextpow2_cp_padded(num_bins), self->precond_params_dl.d_r_sino_error, self->precond_params_dl.d_i_sino_error, self->precond_params_dl.planRamp_forward);
self->precond_params_dl.filter_coeffs = d_i_discrete_ramp; //size : nextpow2(num_bins)/2+1
// Allocate memory
float* d_result;
cudaMalloc(&d_result, dimslice*dimslice*sizeof(float));
float* d_data;
CUDA_SAFE_CALL(cudaMalloc(&d_data, num_bins*num_projs*sizeof(float)));
CUDA_SAFE_CALL(cudaMemcpy(d_data, data, num_bins*num_projs*sizeof(float), cudaMemcpyHostToDevice ));
CUDA_SAFE_CALL(cudaMalloc(&global_sino_tmp, num_bins*num_projs*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&global_slice_tmp, dimslice*dimslice*sizeof(float)));
// Run
wavelets_fista(p4t, d_data, d_result, self->ITERATIVE_CORRECTIONS, beta, beta_rings, rings_height, alpha_rings);
cudaMemcpy(SLICE, d_result, dimslice*dimslice*sizeof(float), cudaMemcpyDeviceToHost);
// Free memory
cudaFree(d_result);
cudaFree(d_data);
cudaFree(self->precond_params_dl.d_r_sino_error);
cudaFree(self->precond_params_dl.d_i_sino_error);
cudaFree(global_sino_tmp);
cudaFree(global_slice_tmp);
CUDACHECK;
return 0;
}
|