1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2015 Pierre Paleo <pierre.paleo@esrf.fr>
# License: BSD
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of ESRF nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import numpy as np
import astra
class AstraToolbox:
"""
ASTRA toolbox wrapper for parallel beam geometry.
"""
def __init__(self, n_x, n_y, angles, dwidth=None, rot_center=None, fullscan=False, super_sampling=None):
"""
Initialize the ASTRA toolbox with a simple parallel configuration.
The image is assumed to be square, and the detector count is equal to the number of rows/columns.
n_x : integer
number of pixels of the X (columns) dimension
n_y : integer
nimber of pixels of the Y (rows) dimension
angles : integer or numpy.ndarray
number of projection angles (if integer), or custom series of angles
dwidth : integer
detector width (number of pixels). If not provided, max(n_x, n_y) is taken.
rot_center : float
user-defined rotation center
fullscan : boolean
if True, use a 360 scan configuration
super_sampling : integer
Detector and Pixel supersampling
"""
angle_max = np.pi
if fullscan: angle_max *= 2
if isinstance(angles, int):
angles = np.linspace(0, angle_max, angles, False)
n_angles = angles.shape[0]
if dwidth is None: dwidth = max(n_x, n_y)
self.vol_geom = astra.create_vol_geom(n_x, n_y)
self.proj_geom = astra.create_proj_geom('parallel', 1.0, dwidth, angles)
if rot_center:
o_angles = np.ones(n_angles) if isinstance(n_angles, int) else np.ones_like(n_angles)
self.proj_geom['option'] = {'ExtraDetectorOffset': (rot_center - n_x / 2.) * o_angles}
self.proj_id = astra.create_projector('cuda', self.proj_geom, self.vol_geom)
# vg : Volume geometry
self.vg = astra.projector.volume_geometry(self.proj_id)
# pg : projection geometry
self.pg = astra.projector.projection_geometry(self.proj_id)
# ---- Configure Projector ------
# sinogram shape
self.sshape = astra.functions.geom_size(self.pg)
# Configure projector
self.cfg_proj = astra.creators.astra_dict('FP_CUDA')
self.cfg_proj['ProjectorId'] = self.proj_id
if super_sampling:
self.cfg_proj['option'] = {'DetectorSuperSampling':super_sampling}
# ---- Configure Backprojector ------
# volume shape
self.vshape = astra.functions.geom_size(self.vg)
# Configure backprojector
self.cfg_backproj = astra.creators.astra_dict('BP_CUDA')
self.cfg_backproj['ProjectorId'] = self.proj_id
if super_sampling:
self.cfg_backproj['option'] = {'PixelSuperSampling':super_sampling}
# -------------------
self.n_x = n_x
self.n_y = n_y
self.dwidth = dwidth
self.n_a = angles.shape[0]
self.rot_center = rot_center if rot_center else dwidth//2
self.angles = angles
def __checkArray(self, arr):
if arr.dtype != np.float32:
arr = arr.astype(np.float32)
if arr.flags['C_CONTIGUOUS']==False:
arr = np.ascontiguousarray(arr)
return arr
def backproj(self, s, filt=False):
if filt is True:
sino = self.filter_projections(s)
else:
sino = s
sino = self.__checkArray(sino)
# In
sid = astra.data2d.link('-sino', self.pg, sino)
self.cfg_backproj['ProjectionDataId'] = sid
# Out
v = np.zeros(self.vshape, dtype=np.float32)
vid = astra.data2d.link('-vol', self.vg, v)
self.cfg_backproj['ReconstructionDataId'] = vid
bp_id = astra.algorithm.create(self.cfg_backproj)
astra.algorithm.run(bp_id)
astra.algorithm.delete(bp_id)
astra.data2d.delete([sid, vid])
return v
def proj(self, v):
v = self.__checkArray(v)
# In
vid = astra.data2d.link('-vol', self.vg, v)
self.cfg_proj['VolumeDataId'] = vid
# Out
s = np.zeros(self.sshape, dtype=np.float32)
sid = astra.data2d.link('-sino',self.pg, s)
self.cfg_proj['ProjectionDataId'] = sid
fp_id = astra.algorithm.create(self.cfg_proj)
astra.algorithm.run(fp_id)
astra.algorithm.delete(fp_id)
astra.data2d.delete([vid, sid])
return s
def filter_projections(self, sino):
nb_angles, l_x = sino.shape
ramp = 1./l_x * np.hstack((np.arange(l_x), np.arange(l_x, 0, -1)))
return np.fft.ifft(ramp * np.fft.fft(sino, 2*l_x, axis=1), axis=1)[:, :l_x].real
def run_algorithm(self, alg, n_it, data):
rec_id = astra.data2d.create('-vol', self.vol_geom)
sino_id = astra.data2d.create('-sino', self.proj_geom, data)
cfg = astra.astra_dict(alg)
cfg['ReconstructionDataId'] = rec_id
cfg['ProjectionDataId'] = sino_id
alg_id = astra.algorithm.create(cfg)
print(("Running %s" %alg))
astra.algorithm.run(alg_id, n_it)
rec = astra.data2d.get(rec_id)
astra.algorithm.delete(alg_id)
astra.data2d.delete(rec_id)
astra.data2d.delete(sino_id)
return rec
def fbp(self, sino):
"""
Runs the Filtered Back-Projection algorithm on the provided sinogram.
sino : numpy.ndarray
sinogram. Its shape must be consistent with the current tomography configuration
"""
return self.backproj(sino, filt=True)
def cleanup(self):
astra.data2d.delete(self.proj_id)
#~ def clipCircle(x): # in-place !
#~ return astra.extrautils.clipCircle(x)
def generate_coords(img_shp, center=None):
R, C = np.indices(img_shp, dtype=np.float64)
if center is None:
center0, center1 = img_shp[0] / 2., img_shp[1] / 2.
else:
center0, center1 = center
R += 0.5 - center0
C += 0.5 - center1
return R, C
def clipCircle(x): # out-of-place !
res = np.copy(x)
R, C = generate_coords(x.shape)
res[R**2 + C**2 > (min(x.shape)//2)**2] = 0
return res
|