File: tomography.py

package info (click to toggle)
pyhst2 2020c-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bullseye
  • size: 12,532 kB
  • sloc: ansic: 11,807; python: 9,663; cpp: 6,786; makefile: 147; sh: 31
file content (224 lines) | stat: -rw-r--r-- 7,727 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#  Copyright 2015 Pierre Paleo <pierre.paleo@esrf.fr>
#  License: BSD
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  * Redistributions of source code must retain the above copyright notice, this
#    list of conditions and the following disclaimer.
#
#  * Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions and the following disclaimer in the documentation
#    and/or other materials provided with the distribution.
#
#  * Neither the name of ESRF nor the names of its
#    contributors may be used to endorse or promote products derived from
#    this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
#  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
#  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
#  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
#  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE


from __future__ import absolute_import
from __future__ import print_function


from __future__ import division
import numpy as np
import astra

class AstraToolbox:
    """
    ASTRA toolbox wrapper for parallel beam geometry.
    """

    def __init__(self, n_x, n_y, angles, dwidth=None, rot_center=None, fullscan=False, super_sampling=None):
        """
        Initialize the ASTRA toolbox with a simple parallel configuration.
        The image is assumed to be square, and the detector count is equal to the number of rows/columns.

        n_x : integer
            number of pixels of the X (columns) dimension
        n_y : integer
            nimber of pixels of the Y (rows) dimension
        angles : integer or numpy.ndarray
            number of projection angles (if integer), or custom series of angles
        dwidth : integer
            detector width (number of pixels). If not provided, max(n_x, n_y) is taken.
        rot_center : float
            user-defined rotation center
        fullscan : boolean
            if True, use a 360 scan configuration
        super_sampling : integer
            Detector and Pixel supersampling
        """

        angle_max = np.pi
        if fullscan: angle_max *= 2
        if isinstance(angles, int):
            angles = np.linspace(0, angle_max, angles, False)
        n_angles = angles.shape[0]
        if dwidth is None: dwidth = max(n_x, n_y)

        self.vol_geom = astra.create_vol_geom(n_x, n_y)
        self.proj_geom = astra.create_proj_geom('parallel', 1.0, dwidth, angles)

        if rot_center:
            o_angles = np.ones(n_angles) if isinstance(n_angles, int) else np.ones_like(n_angles)
            self.proj_geom['option'] = {'ExtraDetectorOffset': (rot_center - n_x / 2.) * o_angles}
        self.proj_id = astra.create_projector('cuda', self.proj_geom, self.vol_geom)

        # vg : Volume geometry
        self.vg = astra.projector.volume_geometry(self.proj_id)
        # pg : projection geometry
        self.pg = astra.projector.projection_geometry(self.proj_id)

        # ---- Configure Projector ------
        # sinogram shape
        self.sshape = astra.functions.geom_size(self.pg)
        # Configure projector
        self.cfg_proj = astra.creators.astra_dict('FP_CUDA')
        self.cfg_proj['ProjectorId'] = self.proj_id
        if super_sampling:
            self.cfg_proj['option'] = {'DetectorSuperSampling':super_sampling}

        # ---- Configure Backprojector ------
        # volume shape
        self.vshape = astra.functions.geom_size(self.vg)
        # Configure backprojector
        self.cfg_backproj = astra.creators.astra_dict('BP_CUDA')
        self.cfg_backproj['ProjectorId'] = self.proj_id
        if super_sampling:
            self.cfg_backproj['option'] = {'PixelSuperSampling':super_sampling}
        # -------------------
        self.n_x = n_x
        self.n_y = n_y
        self.dwidth = dwidth
        self.n_a = angles.shape[0]
        self.rot_center = rot_center if rot_center else dwidth//2
        self.angles = angles


    def __checkArray(self, arr):
        if arr.dtype != np.float32:
            arr = arr.astype(np.float32)
        if arr.flags['C_CONTIGUOUS']==False:
            arr = np.ascontiguousarray(arr)
        return arr


    def backproj(self, s, filt=False):
        if filt is True:
            sino = self.filter_projections(s)
        else:
            sino = s
        sino = self.__checkArray(sino)
        # In
        sid = astra.data2d.link('-sino', self.pg, sino)
        self.cfg_backproj['ProjectionDataId'] = sid
        # Out
        v = np.zeros(self.vshape, dtype=np.float32)
        vid = astra.data2d.link('-vol', self.vg, v)
        self.cfg_backproj['ReconstructionDataId'] = vid

        bp_id = astra.algorithm.create(self.cfg_backproj)
        astra.algorithm.run(bp_id)
        astra.algorithm.delete(bp_id)
        astra.data2d.delete([sid, vid])
        return v


    def proj(self, v):
        v = self.__checkArray(v)
        # In
        vid = astra.data2d.link('-vol', self.vg, v)
        self.cfg_proj['VolumeDataId'] = vid
        # Out
        s = np.zeros(self.sshape, dtype=np.float32)
        sid = astra.data2d.link('-sino',self.pg, s)
        self.cfg_proj['ProjectionDataId'] = sid

        fp_id = astra.algorithm.create(self.cfg_proj)
        astra.algorithm.run(fp_id)
        astra.algorithm.delete(fp_id)
        astra.data2d.delete([vid, sid])
        return s



    def filter_projections(self, sino):
        nb_angles, l_x = sino.shape
        ramp = 1./l_x * np.hstack((np.arange(l_x), np.arange(l_x, 0, -1)))
        return np.fft.ifft(ramp * np.fft.fft(sino, 2*l_x, axis=1), axis=1)[:, :l_x].real


    def run_algorithm(self, alg, n_it, data):
        rec_id = astra.data2d.create('-vol', self.vol_geom)
        sino_id = astra.data2d.create('-sino', self.proj_geom, data)
        cfg = astra.astra_dict(alg)
        cfg['ReconstructionDataId'] = rec_id
        cfg['ProjectionDataId'] = sino_id
        alg_id = astra.algorithm.create(cfg)
        print(("Running %s" %alg))
        astra.algorithm.run(alg_id, n_it)
        rec = astra.data2d.get(rec_id)
        astra.algorithm.delete(alg_id)
        astra.data2d.delete(rec_id)
        astra.data2d.delete(sino_id)
        return rec


    def fbp(self, sino):
        """
        Runs the Filtered Back-Projection algorithm on the provided sinogram.

        sino : numpy.ndarray
            sinogram. Its shape must be consistent with the current tomography configuration
        """
        return self.backproj(sino, filt=True)


    def cleanup(self):
        astra.data2d.delete(self.proj_id)


#~ def clipCircle(x): # in-place !
    #~ return astra.extrautils.clipCircle(x)


def generate_coords(img_shp, center=None):
    R, C = np.indices(img_shp, dtype=np.float64)
    if center is None:
        center0, center1 = img_shp[0] / 2., img_shp[1] / 2.
    else:
        center0, center1 = center
    R += 0.5 - center0
    C += 0.5 - center1
    return R, C


def clipCircle(x): # out-of-place !
    res = np.copy(x)
    R, C = generate_coords(x.shape)
    res[R**2 + C**2 > (min(x.shape)//2)**2] = 0
    return res