File: testpycuda.py

package info (click to toggle)
pyhst2 2020c-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bullseye
  • size: 12,532 kB
  • sloc: ansic: 11,807; python: 9,663; cpp: 6,786; makefile: 147; sh: 31
file content (369 lines) | stat: -rw-r--r-- 9,470 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import pycuda.driver as drv
import numpy as np
import math
import time
from pycuda.compiler import SourceModule
import h5py

def iceil(x):
    return int(math.ceil(x))


def create_2D_array(np_array):
    h,w = np_array.shape
    descr = drv.ArrayDescriptor()
    descr.width = w
    descr.height = h

    descr.format = drv.dtype_to_array_format(np_array.dtype)
    descr.num_channels = 1
    descr.flags = 0
    device_array = drv.Array(descr)
        
    return device_array

def cu_mem_to_array2D(device_array, cu_mem, h,w):
    #  h, w = np_array.shape
    copy = drv.Memcpy2D()
    print(" COPYING ", cu_mem, " SU ", device_array ) 
    copy.set_src_device(cu_mem)
    copy.set_dst_array(device_array)
    copy.width_in_bytes = copy.src_pitch = w*4
    copy.src_height = copy.height = h
    copy(aligned=False)
    print(" OK " )
    
def host_to_array2D(device_array, npmem):
    #  h, w = np_array.shape
    copy = drv.Memcpy2D()
    copy.set_src_host(npmem)
    copy.set_dst_array(device_array)
    
    print(npmem.dtype)
    print(npmem.shape)
    
    copy.width_in_bytes = copy.src_pitch = npmem.shape[1]*4
    copy.src_height = copy.height = npmem.shape[0]
    copy(aligned=False)




def cu_mem_to_array(device_array, cu_mem, d,h,w):
    # d, h, w = np_array.shape
    copy = drv.Memcpy3D()
    copy.set_src_device(cu_mem)
    copy.set_dst_array(device_array)
    copy.width_in_bytes = copy.src_pitch = w*4
    copy.src_height = copy.height = h
    copy.depth = d
    copy()



def write( cu_mem, filename,datasetname, mode,stp):
        if not isinstance(cu_mem, (np.ndarray, np.generic) ):
            if cu_mem in stp.cu_vols+[stp.cu_reserved_vol]:

                vol_data_recv = np.zeros([stp.NY,stp.NX]    ,"f")
                drv.memcpy_dtoh(  vol_data_recv    ,  cu_mem )

                h5py.File(filename,mode)[datasetname] =vol_data_recv

            elif cu_mem in  stp.cu_sinos+[stp.cu_reserved_sino]:
                vol_data_recv = np.zeros([stp.NA,stp.NX]    ,"f")
                drv.memcpy_dtoh(  vol_data_recv    ,  cu_mem )
                h5py.File(filename,mode)[datasetname] =vol_data_recv
        else:

            h5py.File(filename,mode)[datasetname] =cu_mem



def setup_calculation(  Nvols=2, Nsinos = 2,NX=2048, NA=1500) :


    """            -----------------
    CODICE CUDA
    -----------------
    """
    kernels_space = SourceModule("""
    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_sino;
    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_vol ;
    
    
    #define CUDART_PI_F 3.141592654f 
    
    

    
    __global__ void forwproject( float * sino ,int NX, int NY, int NA, float da,  float  ax_pos)
    {
     const int tix = threadIdx.x;
     const int tia = threadIdx.y;
    
     const int bidx = blockIdx.x;
     const int bida = blockIdx.y;

     int ix = (bidx* blockDim.x + tix) ; 
     int ia  = bida* blockDim.y + tia ; 

     int ip =  ix + NX*( ia ) ; 

     float centerX = (NX-1.0f)*0.5f;
     float centerY = (NY-1.0f)*0.5f;


     if( ix<NX && ia<NA ) {

       float angle = ia*da ; 
       float cosa = cosf(angle);
       float sina = sinf(angle);
	
       if(fabs(cosa)>fabs(sina)) {
	  
	 float sum = 0.0;
	 for(int vy = 0; vy<NY; vy++) {
	   float fx;
	   fx = centerX + ( (ix-ax_pos)  + (vy-centerY)*sina) /cosa ;
           float b = tex2D(tex_vol,  fx  + 0.5f  , vy + 0.5f    ) ;
	   sum += (b)/fabs(cosa); 
         }
	 sino[ip] = sum;
       } else {
	 float sum = 0.0;
	 for(int vx = 0; vx<NX; vx++) {
	   float fy;
	   fy = centerY + ( -(ix-ax_pos)  + (vx-centerX)*cosa) /sina ;
	   float b = tex2D (tex_vol,  vx+0.5f    , fy +0.5f );
           sum += (b)/fabs(sina);
         }
	 sino[ip] = sum;
       }
     }
    }
    __global__ void backproject( float * vol ,int NX, int NY, int NA, float da,float  ax_pos)
    {
       const int tix = threadIdx.x;
       const int tiy = threadIdx.y;

       const int bidx = blockIdx.x;
       const int bidy = blockIdx.y;


       int ix4 = (bidx* blockDim.x + tix)*4 ; 
       int iy2 = (bidy* blockDim.y + tiy)*2 ; 

       float centerX = (NX-1.0f)*0.5f;
       float centerY = (NY-1.0f)*0.5f;


       int ix;
       int iy;
       float sum[8] ; 
       int k;
       for(k=0; k<8; k++)  sum[k]=0.0;
       

       for(int ia=0; ia<NA; ia++) {
	 float angle = ia*da ; 
	 float cosa = cosf(angle);
	 float sina = sinf(angle);
         k=0;
	 for(ix=ix4; ix<ix4+4; ix++) {
	   for(iy=iy2; iy<iy2+2; iy++) {

	     
	     if( ix<NX && iy<NY ) {	       
	       float fx = ax_pos + cosa* (  ix-centerX   ) - sina*(iy-centerY) ;
	       float b =  tex2D(tex_sino, fx+0.5f    , ia+0.5f  );
	       sum[k] += b; 
	     }	 
             k++;
	   }
	 }
       }
       k=0;
       for(ix=ix4; ix<ix4+4; ix++) {
          for(iy=iy2; iy<iy2+2; iy++) {
             if( ix<NX && iy<NY ) {
                int ip =  ix + NX*( iy ) ; 
                vol[ip] = sum[k];
             }
             k++;
           }
       }
      }
    """ 
                                 ###  , arch="sm_70"
                                 )

    class Kspace:
        tex_vol            =kernels_space.get_texref('tex_vol' )
        tex_sino           =kernels_space.get_texref('tex_sino')
        backproject = kernels_space.get_function("backproject")
        forwproject = kernels_space.get_function("forwproject")
    



    
    class setup_return_object:
        pass

    stp = setup_return_object()
    
    NY = NX

    stp.size_of_dtype = 4

    """              --------------------
              PREPARATION TEXTURE
              --------------------
    """
    tex_vol            =Kspace.tex_vol
    tex_sino           =Kspace.tex_sino

    for tex in tex_vol,tex_sino:
        # tex.filterMode     = drv.filter_mode.LINEAR

        # tex.set_filter_mode(drv.filter_mode.POINT)
        tex.set_filter_mode(drv.filter_mode.LINEAR)

        tex.set_address_mode(0, drv.address_mode.BORDER)  
        tex.set_address_mode(1, drv.address_mode.BORDER)
        tex.normalized = False

    stp.tex_vol  = tex_vol
    stp.tex_sino = tex_sino

        
    """
                ------------------------
                creation array  entree/sortie   cuda
                ------------------------
    """
    
    np_tmp     = np.zeros( [NY,NX], "f" )
    print( " alloco ",      NY,NX ,  NY*NX*4,  np_tmp.nbytes , "  x ", Nvols )
    cu_vols = [ drv.mem_alloc( np_tmp.nbytes ) for i in range(Nvols) ]
    stp.cu_reserved_vol = drv.mem_alloc( np_tmp.nbytes )
    
    stp.vol_array = create_2D_array(np_tmp)
    stp.tex_vol.set_array(stp.vol_array)

    ### SINOS    
    np_tmp     = np.zeros( [NA,NX], "f" )
    print( " alloco ",      NA,NX ,  NA*NX*4,  np_tmp.nbytes , "  x ", Nsinos )

    cu_sinos = [  drv.mem_alloc( np_tmp.nbytes ) for i in range(Nsinos) ]
    stp.cu_reserved_sino = drv.mem_alloc( np_tmp.nbytes )


    
    stp.sino_array = create_2D_array(np_tmp)
    stp.tex_sino.set_array(stp.sino_array)


    stp.cu_vols = cu_vols
    stp.cu_sinos = cu_sinos
    stp.NA = NA
    stp.NY = NY
    stp.NX = NX
    
    stp.cu_NA = np.int32(NA)
    stp.cu_NY = np.int32(NY)
    stp.cu_NX = np.int32(NX)

    stp.cufunc_backproject = Kspace.backproject
    stp.cufunc_forwproject = Kspace.forwproject


    
    stp.cu_sinos = stp.cu_sinos

    return stp
         



if __name__ == "__main__":
    gpuid = 0
    ax_pos = (2048-1)/2.0
    NX = 2048
    NA = 1500
    
    NX = 1024
    NA = 1024
    
    da = 180.0/NA *np.pi/180.0

    Ncall = 1024
    
    drv.init()
    cudadevice = drv.Device(gpuid)
    attrs=cudadevice.get_attributes()
    print("\n===Attributes for device %d"%gpuid)
    for (key,value) in attrs.items():
        print("%s:%s"%(str(key),str(value)))
    cudacontext = cudadevice.make_context()
    
    

    Nvols = 2
    Nsinos = 1
    stp  = setup_calculation( NX = NX, NA=NA,     Nvols = Nvols, Nsinos=Nsinos)

    i_init_vol = 0
    i_final_vol = 1
    i_data_sino = 0
    
    vol_ini = np.zeros([ NX,NX  ],"f")
    vol_ini[ int(NX*0.9):int(NX*0.9)+4   ,  NX//2:NX//2+4    ]=1.0


    host_to_array2D(stp.vol_array   ,  vol_ini )
    stp.tex_vol.set_array(stp.vol_array)




    bsx=16
    bsy=16    
    block=(bsx,bsy,1)
    grid=( iceil( float(NX/float((bsx)))), iceil( float(NA)/float((bsy))  ), 1)

    

    
    stp.cufunc_forwproject(stp.cu_sinos[i_data_sino] ,   np.int32(NX),    np.int32(NX),   np.int32(NA),  np.float32(da),  np.float32(ax_pos), block=block, grid=grid ) 


    cu_mem_to_array2D(stp.sino_array ,  stp.cu_sinos[i_data_sino] , NA, NX )
    stp.tex_sino.set_array(stp.sino_array)


    time0 = time.time()

    bsx=16
    bsy=16    
    block=(bsx,bsy,1)
    grid=( iceil( float(NX/float((bsx*4)))), iceil( float(NX)/float((bsy*2))  ), 1)

    
    vol_data_recv = np.zeros([1],"f")
    
    for i in range( Ncall):
        print ( i)
        stp.cufunc_backproject( stp.cu_vols[i_final_vol] ,    np.int32(NX),    np.int32(NX),   np.int32(NA),  np.float32(da),  np.float32(ax_pos),
        block=block, grid=grid)
        drv.memcpy_dtoh(  vol_data_recv    ,  stp.cu_vols[i_final_vol]  ) # just une lecture de un float pour forcer la synchronisation avec la sortie du kernel

    time1 = time.time()
    print(" NSECONDS = ", time1-time0 ,"  pour Ncall =  ",  Ncall)
    
    write( stp.cu_vols[i_final_vol]  , "final.h5","vol", "w",stp)
    write( stp.cu_sinos[i_data_sino]  , "final.h5","init_sino", "r+",stp)

        
    cudacontext.pop()