1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
|
/**
Chambolle-Pock algorithm implementation for TV regularized tomographic reconstruction
**/
//------------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
#include<math_constants.h>
#include <cuda.h>
#include <cublas.h>
#include <cuComplex.h>
#include<time.h>
#define FROMCU
extern "C" {
#include<CCspace.h>
}
# define CUDACHECK \
{ cudaThreadSynchronize(); \
cudaError_t last = cudaGetLastError();\
if(last!=cudaSuccess) {\
printf("ERRORX: %s %s %i \n", cudaGetErrorString( last), __FILE__, __LINE__ ); \
exit(1);\
}\
}
#define WKSIZE 256
# define CUDA_SAFE_CALL_NO_SYNC( call) { \
cudaError err = call; \
if( cudaSuccess != err) { \
fprintf(stderr, "Cuda error in file '%s' in line %i : %s.\n", \
__FILE__, __LINE__, cudaGetErrorString( err) ); \
exit(EXIT_FAILURE); \
} }
# define CUDA_SAFE_CALL( call) CUDA_SAFE_CALL_NO_SYNC(call); \
#include <cufft.h>
#define CUDA_SAFE_FFT(call){ \
cufftResult err = call; \
if( CUFFT_SUCCESS != err) { \
fprintf(stderr, "Cuda error in file '%s' in line %i : %d.\n", \
__FILE__, __LINE__, err ); \
exit(EXIT_FAILURE); \
} }
typedef struct ParamsForTomo {
Gpu_Context *ctxstruct;
float DETECTOR_DUTY_RATIO;
int DETECTOR_DUTY_OVERSAMPLING;
} ParamsForTomo ;
int iDivUp_cp(int a, int b){
return (a % b != 0) ? (a / b + 1) : (a / b);
}
int nextpow2_cp_padded(int v) {
int vold=v;
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
if(v<vold*1.5) v*=2;
return v;
}
int nextpow2_cp(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
int ilog2_cp(int i) {
int l = 0;
while (i >>= 1) { ++l; }
return l;
}
#define fftbunch 128
#define blsize_cufft 32
__global__ void transition_kernel(float * d_r_sino_error,int num_bins,int np2,int numpjs , float axis_position ) ;
int iDivUp(int a, int b);
//Align a to nearest higher multiple of b
int iAlignUp(int a, int b);
//------------------------------------------------------------------------------
float* global_sino_tmp;
float* global_slice_tmp;
//-------------------Various utils. ---------------------------------------------
/**
* @brief compute_histogram : Compute the histogram of a data
* @param data : Data which we want to compute the histogram from
* @param size : number of elements of the data
* @param nbins : number of bins of the resulting histogram
* @param minv : (result, given by address if not NULL) minimum value
* @param maxv : (result, given by address if not NULL) maximum value
* @return hist : the histogram of size "nbins"
*/
int* cp_compute_histogram(float* data, int size, int nbins, float* minv = NULL, float* maxv = NULL) {
float vmin = data[0], vmax = data[0];
int i;
for (i=0; i<size; i++) {
if (data[i] < vmin) vmin = data[i];
if (data[i] > vmax) vmax = data[i];
}
int* hist = (int*) calloc(nbins,sizeof(int));
float binsize = (vmax-vmin)/nbins;
for (i=0;i<size;i++) {
hist[(int) ((data[i]-vmin)/binsize)]++;
}
if (minv) *minv = vmin;
if (maxv) *maxv = vmax;
return hist;
}
double cp_kullback_leibler(float* arr1, float* arr2, int size) {
int nbins = 256;
int* h1 = cp_compute_histogram(arr1, size, nbins);
int* h2 = cp_compute_histogram(arr2, size, nbins);
double dkl = 0;
int Sx = 0, Sy = 0;
for (int i=0; i < nbins; i++) {
Sx += h1[i];
Sy += h2[i];
if (h2[i] == 0 || h1[i] == 0) continue;
dkl += h1[i] * log(((double) h1[i]) / ((double) h2[i]));
}
dkl = dkl/Sx + (nbins/(Sx*1.0))*log(Sy/(Sx*1.0));
free(h1);
free(h2);
return dkl;
}
//------------------------------------------------------------------------------
extern "C" {
int chambolle_pock_driver(Gpu_Context* self, float* data, float* SLICE, float DETECTOR_DUTY_RATIO, int DETECTOR_DUTY_OVERSAMPLING, float beta, float beta_rings, float rings_height, float alpha_rings);
}
#define CP_DEBUG 1
#define CP_VERBOSE 1
#define AHMOD 0
__global__ void cp_kern_compute_discrete_ramp(int length, cufftReal* oArray) {
int gid = threadIdx.x + blockIdx.x*blockDim.x;
if(gid<=length/2) {
float val = ((gid & 1) ? (-1.0f/M_PI/M_PI/gid/gid) : (0.0f));
if (gid == 0) oArray[gid] = 0.25f;
else if (gid == length/2) oArray[gid] = val;
else {
oArray[gid] = val;
oArray[length-gid] = val;
}
}
}
int print_device_array(float* d_array, int numels, char* format);
cufftComplex* cp_compute_discretized_ramp_filter(
int length,
cufftReal* d_r,
cufftComplex* d_i,
cufftHandle myplan)
{
int hlen = length/2+1;
dim3 blk, grd;
blk = dim3( blsize_cufft , 1 , 1 );
grd = dim3( iDivUp_cp(length ,blsize_cufft) , 1 , 1 );
cp_kern_compute_discrete_ramp<<<grd,blk>>> (length, d_r);
CUDA_SAFE_FFT(cufftExecR2C(myplan,(cufftReal *) d_r,(cufftComplex *) d_i));
cufftComplex* filterCoefs;
CUDA_SAFE_CALL(cudaMalloc(&filterCoefs, hlen*sizeof(cufftComplex)));
CUDA_SAFE_CALL(cudaMemcpy(filterCoefs,d_i, hlen*sizeof(cufftComplex), cudaMemcpyDeviceToDevice));
// print_device_array(( float * ) filterCoefs ,100, "%e \n" );
return filterCoefs;
}
__global__ void cp_kern_fourier_filter(cufftComplex* inArray, cufftComplex* filter, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < sizeX && gidy < sizeY) {
inArray[gidy*sizeX+gidx].x *= filter[gidx].x /(2*(sizeX-1));
inArray[gidy*sizeX+gidx].y *= filter[gidx].x /(2*(sizeX-1));
}
}
/**
In-place subtraction elementwise
array <- array-array2
**/
__global__ void subtract_kernel(float* array, float* array2, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < sizeX && gidy < sizeY) {
array[gidy*sizeX+gidx] -= array2[gidy*sizeX+gidx];
}
}
/**
Compute the SQUARED norm of a gradient
(each element of the output is input[i].x **2 + input[i].y **2)
float2* --> float*
**/
__global__ void norm_kernel(float2* input, float* output, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < sizeX && gidy < sizeY) {
int idx = (gidy)*sizeX+gidx;
output[idx] = (input[idx].x * input[idx].x) + (input[idx].y * input[idx].y);
}
}
__global__ void padda_kernel_cp(float * d_r_sino_error,int num_bins,int np2,int numpjs ) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < np2-num_bins && gidy < numpjs) {
d_r_sino_error[ gidy*np2 + (num_bins+gidx) ] = d_r_sino_error[ gidy*np2 + (num_bins-1)*( gidx<(np2-num_bins)/2 )];
}
}
__global__ void gradient_kernel(float* slice, float2* slice_grad, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
float val_x = 0, val_y = 0;
if (gidx < sizeX && gidy < sizeY) {
if (gidx == sizeX-1) val_y = 0;
else val_y = slice[(gidy)*sizeX+gidx+1] - slice[(gidy)*sizeX+gidx];
if (gidy == sizeY-1) val_x = 0;
else val_x = slice[(gidy+1)*sizeX+gidx] - slice[(gidy)*sizeX+gidx];
slice_grad[(gidy)*sizeX+gidx].x = val_x;
slice_grad[(gidy)*sizeX+gidx].y = val_y;
}
}
__global__ void divergence_kernel(float2* slice_grad, float* slice, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
float val_x = 0, val_y = 0;
if (gidx < sizeX && gidy < sizeY) {
if (gidx == 0) val_y = slice_grad[(gidy)*sizeX+gidx].y;
else val_y = slice_grad[(gidy)*sizeX+gidx].y - slice_grad[(gidy)*sizeX+gidx-1].y;
if (gidy == 0) val_x = slice_grad[(gidy)*sizeX+gidx].x;
else val_x = slice_grad[(gidy)*sizeX+gidx].x - slice_grad[(gidy-1)*sizeX+gidx].x;
slice[(gidy)*sizeX+gidx] = val_x + val_y;
}
}
//p = (p + sigma*(x_tilde_proj - data))/(1+sigma)
__global__ void dual_shrink_kernel(float* dual_p, float* sino, float* data, float sigma, int num_bins, int nprojs_span) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < num_bins && gidy < nprojs_span) {
int idx = (gidy)*num_bins+gidx;
dual_p[idx] = (dual_p[idx] + sigma*(sino[idx] - data[idx]))/(1.0f+sigma);
}
}
//Projection onto the L-infinity unit ball
//q = proj_linf(q + sigma*gx, lambda_)
__global__ void dual_proj_linf_kernel(float2* dual_q, float2* slice_grad, float sigma, float lambda, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < sizeX && gidy < sizeY) {
int idx = (gidy)*sizeX+gidx;
float val_x = dual_q[idx].x + sigma*slice_grad[idx].x;
float val_y = dual_q[idx].y + sigma*slice_grad[idx].y;
dual_q[idx].x = copysignf(min(fabsf(val_x), lambda), val_x);
dual_q[idx].y = copysignf(min(fabsf(val_y), lambda), val_y);
}
}
//Convert a gradient-like array to a slice-like array, taking the sum of absolute values of each components
__global__ void reduce_gradient_kernel(float* output, float2* input, int sizeX, int sizeY) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < sizeX && gidy < sizeY) {
int idx = gidy*sizeX+gidx;
output[idx] = fabsf(input[idx].x)+fabsf(input[idx].y);
}
}
//add a ring-like array to a sinogram-like array.
__global__ void add_rings_to_sinogram_kernel(float *sino, float* rings, float alpha_rings, int num_bins, int nprojs_span) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if( gidx < num_bins && gidy < nprojs_span) {
sino[gidy*num_bins +gidx] += alpha_rings*rings[gidx]; //gidy ~ idoppio*nprojs_span+iproj
}
}
//Projection onto the L-infinity unit ball (ring-like arrays)
//v = proj_linf(v + sigma*r, beta_r)
__global__ void sino_proj_linf_kernel(float* dual_v, float* rings, float sigma, float beta_r, int num_bins) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidx < num_bins && gidy == 0) {
int idx = gidy*num_bins+gidx;
float val = dual_v[idx] + sigma*rings[idx];
dual_v[gidy] = copysignf(min(fabsf(val), beta_r), val);
}
}
//r = r - tau*(p+v) where p is sinogram-like and v is rings-like
__global__ void update_rings_kernel(float* rings, float* dual_p, float* dual_v,float tau, float rings_height, int num_bins, int nprojs_span) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if( gidx< num_bins && gidy==0) { // FIXME: call with 1D grid and block !
float sum = 0.0f;
for(int ipro=0; ipro < nprojs_span; ipro++) {
sum += dual_p[(gidy*nprojs_span+ipro)*num_bins + gidx];
}
rings[gidx + gidy*num_bins] -= tau*(sum + dual_v[gidx + gidy*num_bins]);
rings[gidx + gidy*num_bins] = min(rings[gidx + gidy*num_bins], rings_height); //prevent rings to take too big values
}
}
/// performs arr1 /= max(arr2, vmin)
__global__ void division_kernel(float* arr1, float* arr2, int Nx, int Ny, float vmin) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
int tid = gidy*Nx + gidx;
if (gidx < Nx && gidy < Ny) {
float val = arr2[tid];
if (fabsf(val) < vmin) val = vmin;
arr1[tid] /= val;
}
}
int cp_call_division(float* d_arr1, float* d_arr2, int Nx, int Ny, float vmin) {
dim3 blk = dim3(blsize_cufft, blsize_cufft, 1);
dim3 grd = dim3(iDivUp_cp(Nx, blsize_cufft), iDivUp_cp(Ny, blsize_cufft), 1);
division_kernel<<<grd, blk>>>(d_arr1, d_arr2, Nx, Ny, vmin);
return 0;
}
int cp_normalize_mean(float* d_arr, int Nx, int Ny) {
float mean;
float* d_ones, one=1.0f;
cudaMalloc(&d_ones, sizeof(float));
cudaMemcpy(d_ones, &one, sizeof(float), cudaMemcpyHostToDevice);
mean = cublasSdot(Nx*Ny, d_arr, 1, d_ones, 0);
mean /= (Nx*Ny);
cublasSscal(Nx*Ny, 1.0f/mean, d_arr, 1);
cudaFree(d_ones);
return 0;
}
/**
* @brief calculate_l1_norm : calculate the L1 norm of a gradient-like array.
* TODO : use a parallel reduction
*/
float calculate_l1_norm(float2* slice_grad, int dimslice_0, int dimslice_1) {
float* slice_tmp;
// CUDA_SAFE_CALL(cudaMalloc(&slice_tmp, dimslice_0*dimslice_1*sizeof(float)));
slice_tmp = global_slice_tmp;
dim3 blk, grd;
blk = dim3( blsize_cufft , blsize_cufft , 1 );
grd = dim3( iDivUp_cp(dimslice_0, blsize_cufft) , iDivUp_cp(dimslice_1, blsize_cufft) , 1 );
reduce_gradient_kernel<<<grd,blk>>>(slice_tmp, slice_grad, dimslice_1, dimslice_0);
float l1_norm = cublasSasum(dimslice_0*dimslice_1, slice_tmp, 1);
// CUDA_SAFE_CALL(cudaFree(slice_tmp));
return l1_norm;
}
// q2 = (q2 + sigma*U(x_tilde))/(1.0 + sigma/Lambda2)
__global__ void shrink_gradient_kernel(float2* dual_q2, float2* slice_grad, int Nx, int Ny, float sigma, float beta) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if( gidx< Nx && gidy < Ny) {
float2 val = dual_q2[gidy*Nx+gidx];
val.x = (val.x + sigma*slice_grad[gidy*Nx+gidx].x)/(1.0f + sigma/beta);
val.y = (val.y + sigma*slice_grad[gidy*Nx+gidx].y)/(1.0f + sigma/beta);
dual_q2[gidy*Nx+gidx] = val;
}
}
int call_shrink_gradient(float2* dual_q2, float2* slice_grad, int Nx, int Ny, float sigma, float beta_L2) {
dim3 grd, blk;
blk = dim3(blsize_cufft, blsize_cufft, 1);
grd = dim3(iDivUp_cp(Nx, blsize_cufft), iDivUp_cp(Ny, blsize_cufft), 1);
shrink_gradient_kernel<<<grd, blk>>>(dual_q2, slice_grad, Nx, Ny, sigma, beta_L2);
return 0;
}
// positivity constraint : projection on the positive subspace
__global__ void positivity_kernel(float* slice, int Nx, int Ny) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if( gidx< Nx && gidy < Ny) {
if (slice[gidy*Nx+gidx] < 0) slice[gidy*Nx+gidx] = 0;
}
}
int write_device_array(float* d_array, int numels, const char* fname) {
FILE* fid = fopen(fname, "wb");
if (fid == NULL) {
printf("ERROR : could not open %s\n",fname);
return -1;
}
float* h_array = (float*) calloc(numels,sizeof(float));
CUDA_SAFE_CALL(cudaMemcpy(h_array, d_array, numels*sizeof(float), cudaMemcpyDeviceToHost));
fwrite(h_array, numels, sizeof(float), fid);
fclose(fid);
free(h_array);
return 0;
}
//-----------------------------------------------------------------------------
void filter_projections(ParamsForTomo p4t, float* d_sino_tmp, int num_bins, int num_projs) {
cufftHandle planRamp_forward = (cufftHandle) p4t.ctxstruct->precond_params_dl.planRamp_forward;
cufftHandle planRamp_backward = (cufftHandle) p4t.ctxstruct->precond_params_dl.planRamp_backward;
cufftReal* d_r_sino_error = (cufftReal*) p4t.ctxstruct->precond_params_dl.d_r_sino_error;
cufftComplex* d_i_sino_error = (cufftComplex*) p4t.ctxstruct->precond_params_dl.d_i_sino_error;
int sino_size = num_projs*num_bins;
int dim_fft_ramp = nextpow2_cp_padded(num_bins)/2+1;
dim3 blk, grd;
blk = dim3( blsize_cufft , blsize_cufft , 1 );
grd = dim3( iDivUp_cp(dim_fft_ramp ,blsize_cufft) , iDivUp_cp(fftbunch ,blsize_cufft) , 1 );
//~ printf("before filtering : %e\n", cublasSasum(sino_size, d_sino_tmp, 1));
for (int offset = 0 ; offset < sino_size; offset += num_bins*fftbunch) {
int numels = min(sino_size-offset,fftbunch*num_bins);
//The following memset is important for "weird" sizes...
CUDA_SAFE_CALL(cudaMemset(d_r_sino_error, 0, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftReal)));
//~ printf("memset : %e\n", cublasSasum(fftbunch*nextpow2_cp_padded(num_bins), d_r_sino_error, 1));
// CUDA_SAFE_CALL(cudaMemcpy(d_r_sino_error, d_sino_tmp+offset, numels*sizeof(cufftReal), cudaMemcpyDeviceToDevice));
CUDA_SAFE_CALL(cudaMemcpy2D(d_r_sino_error, // dst
nextpow2_cp_padded(num_bins)*sizeof(cufftReal), // width (bytes) of dst
d_sino_tmp+offset, // src
num_bins*sizeof(cufftReal), // width (bytes) of src
num_bins*sizeof(cufftReal), // width (bytes) of matrix transfer
numels/num_bins, //height (pixels !)
cudaMemcpyDeviceToDevice));
// {
// dim3 blk, grd;
// blk = dim3( blsize_cufft , blsize_cufft , 1 );
// grd = dim3( iDivUp_cp( nextpow2_cp_padded(num_bins) - num_bins,blsize_cufft) , iDivUp_cp( numels/num_bins,blsize_cufft) , 1 );
// padda_kernel_cp<<<grd,blk>>>( d_r_sino_error, num_bins, nextpow2_cp_padded(num_bins), numels/num_bins ) ;
// }
//~ printf("() : %e\n", cublasSasum(numels, d_r_sino_error, 1));
//FFT, ramp, IFFT
CUDA_SAFE_FFT(cufftExecR2C(planRamp_forward,(cufftReal *) d_r_sino_error,(cufftComplex *) d_i_sino_error));
//~ printf("[] : %e\n", cublasScnrm2(fftbunch*nextpow2_cp_padded(num_bins), d_i_sino_error, 1));
cp_kern_fourier_filter<<<grd,blk>>>(d_i_sino_error, p4t.ctxstruct->precond_params_dl.filter_coeffs, dim_fft_ramp, fftbunch);
CUDA_SAFE_FFT(cufftExecC2R(planRamp_backward,(cufftComplex *) d_i_sino_error,(cufftReal *) d_r_sino_error));
// CUDA_SAFE_CALL(cudaMemcpy(d_sino_tmp+offset,d_r_sino_error, numels*sizeof(cufftReal), cudaMemcpyDeviceToDevice));
CUDA_SAFE_CALL(cudaMemcpy2D(
d_sino_tmp+offset,
num_bins*sizeof(cufftReal),
d_r_sino_error ,
nextpow2_cp_padded(num_bins)*sizeof(cufftReal),
num_bins*sizeof(cufftReal),
numels/num_bins,
cudaMemcpyDeviceToDevice));
}
//~ printf("After filtering : %e\n", cublasSasum(num_bins*num_projs, d_sino_tmp, 1));
}
void memset_ignored_projections(ParamsForTomo p4t, float* d_sino) {
int num_bins = p4t.ctxstruct->num_bins;
int nprojs_span = p4t.ctxstruct->nprojs_span;
int curr_ignored_angle = 0;
int i;
for (i = 0; i < nprojs_span; i++) {
if (i == p4t.ctxstruct->ignore_angles[curr_ignored_angle]) {
cudaMemset(d_sino + i*num_bins, 0, num_bins*sizeof(float));
curr_ignored_angle++;
}
}
}
void proj_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image, int dimslice) {
int memisonhost=0;
p4t.ctxstruct->gpu_project(p4t.ctxstruct->gpuctx,
p4t.ctxstruct->num_bins,
p4t.ctxstruct->nprojs_span,
p4t.ctxstruct->angles_per_proj,
p4t.ctxstruct->axis_position ,
d_sino ,
d_image ,
dimslice,
p4t.ctxstruct->axis_corrections,
p4t.ctxstruct->gpu_offset_x ,
p4t.ctxstruct->gpu_offset_y ,
p4t.ctxstruct->JOSEPHNOCLIP,
p4t.DETECTOR_DUTY_RATIO,
p4t.DETECTOR_DUTY_OVERSAMPLING,
memisonhost, p4t.ctxstruct->FAN_FACTOR,
p4t.ctxstruct->SOURCE_X
);
if (p4t.ctxstruct->do_ignore_projections) memset_ignored_projections(p4t, d_sino);
if (p4t.ctxstruct->DATA_IS_FILTERED) filter_projections(p4t, d_sino, p4t.ctxstruct->num_bins, p4t.ctxstruct->nprojs_span);
}
void smooth_transition(float *d_sino_tmp , int num_bins, int nprojs_span , float axis_position ) {
int npitch = num_bins;
dim3 blk, grd;
blk = dim3( 32 , 32 , 1 );
grd = dim3( iDivUp( (num_bins) ,32) , iDivUp( nprojs_span,32) , 1 );
transition_kernel<<<grd,blk>>>(d_sino_tmp ,num_bins, npitch, nprojs_span , axis_position ) ;
}
void backproj_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image, float *d_sino_tmp=NULL) {
int num_bins = p4t.ctxstruct->num_bins;
int nprojs_span = p4t.ctxstruct->nprojs_span;
int sino_size = nprojs_span*num_bins;
if (d_sino_tmp==NULL) d_sino_tmp = global_sino_tmp;
CUDA_SAFE_CALL(cudaMemcpy(d_sino_tmp, d_sino, sino_size*sizeof(float), cudaMemcpyDeviceToDevice));
if (p4t.ctxstruct->do_ignore_projections) memset_ignored_projections(p4t, d_sino_tmp);
if(p4t.ctxstruct->fai360){smooth_transition(d_sino_tmp , num_bins, nprojs_span , p4t.ctxstruct->axis_position ); };
if (p4t.ctxstruct->DATA_IS_FILTERED || p4t.ctxstruct->DO_PRECONDITION) {
filter_projections(p4t, d_sino_tmp, num_bins, nprojs_span);
if(p4t.ctxstruct->fai360) smooth_transition(d_sino_tmp , num_bins, nprojs_span , p4t.ctxstruct->axis_position );
p4t.ctxstruct->gpu_backproj(p4t.ctxstruct, d_sino_tmp, d_image, 0, p4t.DETECTOR_DUTY_RATIO, p4t.DETECTOR_DUTY_OVERSAMPLING, 1, 0);
}
else {
if(p4t.ctxstruct->fai360) smooth_transition(d_sino_tmp , num_bins, nprojs_span , p4t.ctxstruct->axis_position );
if ((p4t.ctxstruct->FLUO_SINO) && (p4t.ctxstruct->FLUO_step == 2)) {
cp_call_division(d_sino_tmp, p4t.ctxstruct->d_Sigma, num_bins, nprojs_span, 1.0/100.0); //TODO : parameter for "vmin"
}
cublasSscal(sino_size, (M_PI*0.5f)/nprojs_span, d_sino_tmp, 1);
p4t.ctxstruct->gpu_backproj(p4t.ctxstruct, d_sino_tmp, d_image, 0, p4t.DETECTOR_DUTY_RATIO, p4t.DETECTOR_DUTY_OVERSAMPLING, 1, 0);
CUDA_SAFE_CALL(cudaMemcpy(d_sino_tmp, d_sino, sino_size*sizeof(float), cudaMemcpyDeviceToDevice));
}
}
/*
void backproj_dfi_wrapper(ParamsForTomo p4t, float* d_sino, float* d_image) {
int num_bins = p4t.ctxstruct->num_bins;
int nprojs_span = p4t.ctxstruct->nprojs_span;
int dim_fft = nextpow2(num_bins);
float *WORK[nprojs_span];
WORK[0] = (float*) malloc(self->params.nprojs_span*(dim_fft)*sizeof(float));
memcpy(WORK[0],d_sino +iv*blocksino + (projection) * num_bins, num_bins * sizeof(float));
int projection;
for(projection=0; projection < self->params.nprojs_span; projection++) {
WORK[projection] = WORK[0] + projection*dim_fft;
}
p4t.ctxstruct->gpu_backproj_dfi(p4t.ctxstruct, d_sino, d_image);
}
*/
//-----------------------------------------------------------------------------------------
float calculate_lipschitz(ParamsForTomo p4t, float* sino, float* slice, int n_it) {
int verbosity = p4t.ctxstruct->verbosity;
if (verbosity > 4) puts("Entering calculate_lipschitz()");
int num_bins = p4t.ctxstruct->num_bins;
int nprojs_span = p4t.ctxstruct->nprojs_span;
int dimslice = p4t.ctxstruct->num_x;
int numels_slice = dimslice*dimslice;
if (verbosity > 4) printf("Nb = %d , Np = %d , d = %d\n",num_bins, nprojs_span, dimslice);
float* slicetmp;
CUDA_SAFE_CALL(cudaMalloc(&slicetmp, numels_slice*sizeof(float)));
CUDACHECK;
float2* slice_grad;
CUDA_SAFE_CALL(cudaMalloc( &slice_grad, numels_slice*sizeof(float2)));
CUDACHECK;
//~ printf("Before backproj sino = : %e\n", cublasSasum(num_bins*nprojs_span, sino, 1));
backproj_wrapper(p4t, sino, slice);
//~ printf("After backproj slice = : %e\n", cublasSasum(dimslice*dimslice, sino, 1));
dim3 blk, grd;
blk = dim3( blsize_cufft , blsize_cufft , 1 );
grd = dim3( iDivUp_cp(dimslice ,blsize_cufft) , iDivUp_cp(dimslice ,blsize_cufft) , 1 );
float norm = 0.0f;
float Lipschitz = 0.0f;
// float L1 = 0, L2 = 0;
int k;
for (k = 0; k < n_it; k++) {
//x = P^T*(P*x) - div(grad(x))
proj_wrapper(p4t, sino, slice, dimslice);
gradient_kernel<<<grd,blk>>>(slice, slice_grad, dimslice, dimslice);
backproj_wrapper(p4t, sino, slice);
divergence_kernel<<<grd,blk>>>(slice_grad, slicetmp, dimslice, dimslice);
cublasSaxpy (dimslice*dimslice, -1.0f, slicetmp, 1, slice, 1);
//renormalize variables
norm = cublasSnrm2 (numels_slice, slice, 1);
cublasSscal(numels_slice, 1.0f/norm, slice , 1);
/*
//Apply operator K on (x)
proj_wrapper(p4t, sino, slice, dimslice);
gradient_kernel<<<grd,blk>>>(slice, slice_grad, dimslice, dimslice);
//L = norm(K*(x),'fro')
norm_kernel<<<grd,blk>>>(slice_grad, slicetmp, dimslice, dimslice);
L1 = cublasSnrm2(num_bins*nprojs_span, sino, 1);
L2 = cublasSasum(numels_slice, slicetmp, 1);
Lipschitz = sqrtf(L1*L1 + L2);
*/
Lipschitz = sqrt(norm);
if ((verbosity > 3) && (k % 10 == 0)) printf("Lipschitz (%d) : %e\n",k,Lipschitz);
}
CUDA_SAFE_CALL(cudaFree(slicetmp));
CUDA_SAFE_CALL(cudaFree(slice_grad));
CUDACHECK;
return Lipschitz;
}
float calculate_lipschitz_rings(ParamsForTomo p4t, float* sino, float* slice, float rings_height, float alpha_rings, int n_it) {
int verbosity = p4t.ctxstruct->verbosity;
if (verbosity > 4) puts("Entering calculate_lipschitz_rings()");
int num_bins = p4t.ctxstruct->num_bins;
int nprojs_span = p4t.ctxstruct->nprojs_span;
int dimslice = p4t.ctxstruct->num_x;
int numels_slice = dimslice*dimslice;
if (verbosity > 4) printf("Nb = %d , Np = %d , d = %d\n",num_bins, nprojs_span, dimslice);
float* slicetmp;
CUDA_SAFE_CALL(cudaMalloc(&slicetmp, numels_slice*sizeof(float)));
CUDACHECK;
float2* slice_grad;
CUDA_SAFE_CALL(cudaMalloc( &slice_grad, numels_slice*sizeof(float2)));
float* rings, *null_array;
CUDA_SAFE_CALL(cudaMalloc(&rings, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(rings, 0, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&null_array, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(null_array, 0, num_bins*sizeof(float)));
CUDACHECK;
backproj_wrapper(p4t, sino, slice);
dim3 blk, grd;
blk = dim3( blsize_cufft , blsize_cufft , 1 );
grd = dim3( iDivUp_cp(dimslice ,blsize_cufft) , iDivUp_cp(dimslice ,blsize_cufft) , 1 );
dim3 grd_rings = dim3(iDivUp_cp(num_bins ,blsize_cufft), 1, 1);
dim3 grd_rings2 = dim3(iDivUp_cp(num_bins ,blsize_cufft), iDivUp_cp(nprojs_span, blsize_cufft), 1);
float norm = 0.0f, norm_r = 0.0f;
float Lipschitz = 0.0f;
// float L1 = 0, L2 = 0, L3 = 0;
int k;
for (k = 0; k < n_it; k++) {
//x = P^T*(P*x+r) - div(grad(x))
proj_wrapper(p4t, sino, slice, dimslice);
gradient_kernel<<<grd,blk>>>(slice, slice_grad, dimslice, dimslice);
add_rings_to_sinogram_kernel<<<grd_rings2,blk>>>(sino, rings, alpha_rings, num_bins, nprojs_span);
backproj_wrapper(p4t, sino, slice);
divergence_kernel<<<grd,blk>>>(slice_grad, slicetmp, dimslice, dimslice);
cublasSaxpy (dimslice*dimslice, -1.0f, slicetmp, 1, slice, 1);
//r = P*x + 2*r
if (fabsf(alpha_rings - 1) > 0.001) cublasSscal(num_bins, alpha_rings, rings, 1);
update_rings_kernel<<<grd_rings,blk>>>(rings, sino, null_array, -1.0f, rings_height, num_bins, nprojs_span);
//renormalize variables
/*
norm = cublasSnrm2 (numels_slice, slice, 1);
cublasSscal(numels_slice, 1.0f/norm, slice , 1);
norm_r = cublasSnrm2(num_bins, rings, 1);
cublasSscal(num_bins, 1.0f/norm_r, rings, 1);
*/
// All variables should be normalized with the same norm (norm of K)
norm = cublasSnrm2(numels_slice, slice, 1);
norm_r = cublasSnrm2(num_bins, rings, 1);
norm = sqrt(norm*norm + norm_r*norm_r);
cublasSscal(numels_slice, 1.0f/norm, slice , 1);
cublasSscal(num_bins, 1.0f/norm, rings, 1);
/*
//Apply operator K on (x, r)
proj_wrapper(p4t, sino, slice, dimslice);
add_rings_to_sinogram_kernel<<<grd_rings2,blk>>>(sino, rings, alpha_rings, num_bins, nprojs_span);
gradient_kernel<<<grd,blk>>>(slice, slice_grad, dimslice, dimslice);
//L = norm(K*(x,r),'fro')
norm_kernel<<<grd,blk>>>(slice_grad, slicetmp, dimslice, dimslice);
L1 = cublasSnrm2(num_bins*nprojs_span, sino, 1);
L2 = cublasSasum(numels_slice, slicetmp, 1);
L3 = cublasSnrm2(num_bins, rings, 1);
Lipschitz = sqrtf(L1*L1 + L2 + L3*L3);
*/
Lipschitz = sqrt(norm);
if (verbosity > 3) if (k % 10 == 0) printf("Lipschitz (%d) : %e\n",k,Lipschitz);
}
CUDA_SAFE_CALL(cudaFree(slicetmp));
CUDA_SAFE_CALL(cudaFree(slice_grad));
CUDA_SAFE_CALL(cudaFree(null_array));
CUDA_SAFE_CALL(cudaFree(rings));
CUDACHECK;
return Lipschitz;
}
int chambolle_pock_main_rings(ParamsForTomo p4t, float* sino, float* slice, float* data, int n_it, float beta, float beta_r, float rings_height, float alpha_rings, float* last_l2 = NULL, float* last_tv = NULL) {
int num_bins = p4t.ctxstruct->num_bins;
int nprojs_span = p4t.ctxstruct->nprojs_span;
int dimslice = p4t.ctxstruct->num_x;
char DO_RING_CORR = (rings_height > 0.00001 ? 1 : 0);
float beta_L2 = p4t.ctxstruct->BETA_L2;
char DO_L2_REG = (beta_L2 > 1e-7 ? 1 : 0);
int verbosity = p4t.ctxstruct->verbosity;
char POS_CONSTRAINT = (p4t.ctxstruct->ITER_POS_CONSTRAINT > 0 ? 1 : 0);
dim3 blk, grd;
blk = dim3(blsize_cufft , blsize_cufft , 1 );
grd = dim3(iDivUp_cp(dimslice, blsize_cufft), iDivUp_cp(dimslice, blsize_cufft), 1);
dim3 grd2 = dim3(iDivUp_cp(num_bins ,blsize_cufft), iDivUp_cp(nprojs_span, blsize_cufft), 1);
dim3 grd_rings = dim3(iDivUp_cp(num_bins ,blsize_cufft), 1, 1);
dim3 grd_rings2 = dim3(iDivUp_cp(num_bins ,blsize_cufft), iDivUp_cp(nprojs_span, blsize_cufft), 1);
int lip_iter = p4t.ctxstruct->LIPSCHITZ_ITERATIONS;
float L;
if (DO_RING_CORR) L = calculate_lipschitz_rings(p4t, sino, slice, rings_height, alpha_rings, lip_iter);
else L = calculate_lipschitz(p4t, sino, slice, lip_iter);
L *= p4t.ctxstruct->LIPSCHITZFACTOR;
if (DO_L2_REG) L = sqrt(L*L + 2.0*1.4143);
if (verbosity > 5) printf("Lipschitz = %e\n", L);
//Initial guess
backproj_wrapper(p4t, data, slice);
//if (CP_DEBUG) write_device_array(slice, dimslice*dimslice, "firstguess.dat");
if (n_it == 0) {
puts("(CP) No iterations, returning filtered back-projection result");
return 0;
}
//TODO : work to reduce the memory usage. For eg. dual_p_backproj be removed using slice_tmp
int numels_slice = dimslice*dimslice;
int numels_sino = num_bins*nprojs_span;
float* dual_p, *slice_tilde, *slice_old, *dual_p_backproj, *slice_tmp;
float2* dual_q2;
float2* slice_grad, *dual_q;
CUDA_SAFE_CALL(cudaMalloc(&dual_p, numels_sino*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(dual_p, 0, numels_sino*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&dual_q, numels_slice*sizeof(float2)));
CUDA_SAFE_CALL(cudaMemset(dual_q, 0, numels_slice*sizeof(float2)));
CUDA_SAFE_CALL(cudaMalloc(&slice_grad, numels_slice*sizeof(float2)));
CUDA_SAFE_CALL(cudaMemset(slice_grad, 0, numels_slice*sizeof(float2)));
CUDA_SAFE_CALL(cudaMalloc(&slice_tilde, numels_slice*sizeof(float)));
CUDA_SAFE_CALL(cudaMemcpy(slice_tilde, slice, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice));
CUDA_SAFE_CALL(cudaMalloc(&slice_old, numels_slice*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&dual_p_backproj, numels_slice*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&slice_tmp, numels_slice*sizeof(float)));
if (DO_L2_REG) {
cudaMalloc(&dual_q2, numels_slice*sizeof(float2));
cudaMemset(dual_q2, 0, numels_sino*sizeof(float2));
}
float* dual_v, *rings, *rings_tilde, *rings_old;
if (DO_RING_CORR) {
CUDA_SAFE_CALL(cudaMalloc(&rings, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&rings_tilde, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&dual_v, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&rings_old, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(rings, 0, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(rings_tilde, 0, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(dual_v, 0, num_bins*sizeof(float)));
CUDA_SAFE_CALL(cudaMemset(rings_old, 0, num_bins*sizeof(float)));
}
CUDACHECK;
//TODO : check allocations (cudaSuccess, cudaErrorMemoryAllocation)
// if (dual_p == NULL || dual_q == NULL || slice_grad == NULL || slice_tilde == NULL || slice_old == NULL || dual_p_backproj == NULL || slice_tmp == NULL) {
// puts("ERROR : out of memory, could not allocate enough memory for all device arrays");
// return -1;
// }
if (verbosity > 3) {
const char* status[2] = {"DISABLED", "ENABLED"};
puts("Now executing Chambolle-Pock main loop");
printf("Nb = %d , Np = %d, d = %d, B = %f, Br = %f\n",num_bins, nprojs_span, dimslice, beta, beta_r);
printf("Rings correction is %s\n", status[DO_RING_CORR]);
printf("Ramp filtering is %s\n", status[p4t.ctxstruct->DO_PRECONDITION]);
printf("L2 regularization is %s\n", status[DO_L2_REG]);
}
/*
* Chambolle-Pock parameters for tomography.
* TODO : do not hardcode these
*/
float lambda = beta;
float tau, gamma, theta, sigma;
// float rho;
if (AHMOD) {
tau = 0.02f;
gamma = 0.7f*lambda;
theta = sqrtf(1 + 2*gamma*tau);
sigma = 4.0/(tau * L*L);
}
else {
sigma = 1.0f/L;
theta = 1.0f;
tau = 1.0f/L;
// rho = 1.9f;
}
//-------------
float* energies = (float*) malloc(n_it*sizeof(float)); //DEBUG
float fidelity = 0, l1_norm = 0, l1_norm_rings = 0;
for (int k=0; k < n_it; k++) {
//update dual variables (dual_p, dual_q)
//q = proj_linf(q + sigma*grad(x))
//p = shrink(p + sigma*(P*x + r))
//v = proj_linf(v + sigma*r)
gradient_kernel<<<grd,blk>>>(slice_tilde, slice_grad, dimslice, dimslice); //CUDACHECK;
proj_wrapper(p4t, sino, slice_tilde, dimslice); //CUDACHECK;
if (DO_RING_CORR) add_rings_to_sinogram_kernel<<<grd_rings2,blk>>>(sino, rings_tilde, alpha_rings, num_bins, nprojs_span); //CUDACHECK;
dual_shrink_kernel<<<grd2,blk>>>(dual_p, sino, data, sigma, num_bins, nprojs_span); //CUDACHECK;
dual_proj_linf_kernel<<<grd,blk>>>(dual_q, slice_grad, sigma, lambda, dimslice, dimslice); //CUDACHECK;
if (DO_RING_CORR) sino_proj_linf_kernel<<<grd_rings,blk>>>(dual_v, rings_tilde, sigma, beta_r, num_bins); //CUDACHECK;
// If this is working well, the following should be merged with another kernel
if (DO_L2_REG) call_shrink_gradient(dual_q2, slice_grad, dimslice, dimslice, sigma, beta_L2);
//update primal variables
//x = x - tau*p_backproj + tau*div(q)
backproj_wrapper(p4t, dual_p, dual_p_backproj); //CUDACHECK;
CUDA_SAFE_CALL(cudaMemcpy(slice_old, slice, numels_slice*sizeof(float), cudaMemcpyDeviceToDevice));
if (DO_RING_CORR) CUDA_SAFE_CALL(cudaMemcpy(rings_old, rings, num_bins*sizeof(float), cudaMemcpyDeviceToDevice));
divergence_kernel<<<grd,blk>>>(dual_q, slice_tmp, dimslice, dimslice); //CUDACHECK;
cublasSaxpy(numels_slice, -tau, dual_p_backproj, 1, slice, 1); //CUDACHECK;
cublasSaxpy(numels_slice, tau, slice_tmp, 1, slice, 1); //CUDACHECK;
if (DO_L2_REG) {
divergence_kernel<<<grd,blk>>>(dual_q2, slice_tmp, dimslice, dimslice);
cublasSaxpy(numels_slice, tau, slice_tmp, 1, slice, 1);
}
if (POS_CONSTRAINT) {
positivity_kernel<<<grd,blk>>>(slice, dimslice, dimslice);
}
//r = r - tau*(p+v)
if (DO_RING_CORR && fabsf(alpha_rings - 1) > 0.0001) cublasSscal(num_bins, alpha_rings, rings, 1);
if (DO_RING_CORR) update_rings_kernel<<<grd_rings,blk>>>(rings, dual_p, dual_v, tau, rings_height, num_bins, nprojs_span);
//x_tilde = x + theta*(x - x_old) = (1+theta)*x - theta*x_old
CUDA_SAFE_CALL(cudaMemset(slice_tilde, 0, numels_slice*sizeof(float))); //CUDACHECK;
cublasSaxpy(numels_slice, 1+theta, slice, 1, slice_tilde, 1); //CUDACHECK;
cublasSaxpy(numels_slice, -theta, slice_old, 1, slice_tilde, 1); //CUDACHECK;
//rings_tilde = (1+theta)*rings - theta*rings_old
if (DO_RING_CORR) {
CUDA_SAFE_CALL(cudaMemset(rings_tilde, 0, num_bins*sizeof(float))); //CUDACHECK;
cublasSaxpy(num_bins, 1+theta, rings, 1, rings_tilde, 1); //CUDACHECK;
cublasSaxpy(num_bins, -theta, rings_old, 1, rings_tilde, 1); //CUDACHECK;
}
//Norms
if ((verbosity > 1) || (k == n_it - 1)) {
cublasSaxpy(numels_sino, -1.0f, data, 1, sino, 1); //CUDACHECK;
fidelity = cublasSnrm2(numels_sino, sino, 1); //CUDACHECK;
fidelity *= fidelity/2;
l1_norm = calculate_l1_norm(slice_grad, dimslice, dimslice);
if (DO_RING_CORR) l1_norm_rings = cublasSasum(num_bins, rings, 1);
energies[k] = fidelity+lambda*l1_norm+beta_r*l1_norm_rings; //DEBUG
if (k % 10 == 0) printf("Iteration %d : Energy = %e \t Fidelity = %e \t L1 norm = %e \t rings = %e\n",k,fidelity+lambda*l1_norm+beta_r*l1_norm_rings,fidelity,l1_norm,l1_norm_rings);
}
}
if (last_l2) *last_l2 = fidelity;
if (last_tv) *last_tv = l1_norm;
CUDA_SAFE_CALL(cudaFree(dual_p));
CUDA_SAFE_CALL(cudaFree(dual_q));
CUDA_SAFE_CALL(cudaFree(slice_grad));
CUDA_SAFE_CALL(cudaFree(slice_tilde));
CUDA_SAFE_CALL(cudaFree(slice_old));
CUDA_SAFE_CALL(cudaFree(dual_p_backproj));
CUDA_SAFE_CALL(cudaFree(slice_tmp));
CUDACHECK;
FILE* fid = fopen("energy_CP.dat", "wb"); //DEBUG
fwrite(energies, sizeof(float), n_it, fid);
fclose(fid);
free(energies);
if (DO_RING_CORR) {
//DEBUG
// float* h_rings = (float*) malloc(num_bins*sizeof(float));
// CUDA_SAFE_CALL(cudaMemcpy(h_rings, rings, num_bins*sizeof(float), cudaMemcpyDeviceToHost));
// FILE* filedebug = fopen("rings.dat","w");
// int wrote = fwrite(h_rings,num_bins*sizeof(float),1,filedebug);
// fclose(filedebug);
// free(h_rings);
//-----
CUDA_SAFE_CALL(cudaFree(rings));
CUDA_SAFE_CALL(cudaFree(rings_tilde));
CUDA_SAFE_CALL(cudaFree(dual_v));
CUDA_SAFE_CALL(cudaFree(rings_old));
}
return 0;
}
// avoid NaN in sqrt(sino)
# define FLUO_DO_CLIP 1
__global__ void sqrt_kernel(float* d_out, float* d_in, int Nx, int Ny, int clip) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
int tid = gidy*Nx + gidx;
if (gidx < Nx && gidy < Ny) {
float val = d_in[tid];
if (clip && val < 0) val = 0;
d_out[tid] = sqrtf(val);
}
}
int cp_call_sqrt(float* d_out, float* d_in, int Nx, int Ny) {
dim3 blk = dim3(blsize_cufft, blsize_cufft, 1);
dim3 grd = dim3(iDivUp_cp(Nx, blsize_cufft), iDivUp_cp(Ny, blsize_cufft), 1);
sqrt_kernel<<<grd, blk>>>(d_out, d_in, Nx, Ny, FLUO_DO_CLIP);
return 0;
}
__global__ void abs_kernel(float* d_out, float* d_in, int Nx, int Ny, int clip) {
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
int tid = gidy*Nx + gidx;
if (gidx < Nx && gidy < Ny) {
float val = d_in[tid];
if (clip && val < 0) val = 0;
d_out[tid] = fabsf(val);
}
}
int cp_call_abs(float* d_out, float* d_in, int Nx, int Ny) {
dim3 blk = dim3(blsize_cufft, blsize_cufft, 1);
dim3 grd = dim3(iDivUp_cp(Nx, blsize_cufft), iDivUp_cp(Ny, blsize_cufft), 1);
abs_kernel<<<grd, blk>>>(d_out, d_in, Nx, Ny, FLUO_DO_CLIP);
return 0;
}
int cp_fluo(ParamsForTomo p4t, float* d_sino, float* d_image, float* d_data, int n_it, float beta, float beta_rings, float rings_height, float alpha_rings) {
int num_bins = p4t.ctxstruct->num_bins;
int nprojs = p4t.ctxstruct->nprojs_span;
int dimslice = p4t.ctxstruct->num_x;
int verbosity = p4t.ctxstruct->verbosity;
// char POS_CONSTRAINT = (p4t.ctxstruct->ITER_POS_CONSTRAINT > 0 ? 1 : 0);
// Perform a standard TV reconstruction
if (verbosity > 2) puts("[FLUO 1/2] Performing standard TV reconstruction");
// put verbosity to 0 ?
// force positivity constraint to avoid nan in sqrt ?
p4t.ctxstruct->FLUO_step = 1;
chambolle_pock_main_rings(p4t, d_sino, d_image, d_data, n_it, beta, beta_rings, rings_height, alpha_rings);
// Project result and compute the estimated (Diagonal) STD matrix
float* d_Sigma;
cudaMalloc(&d_Sigma, num_bins*nprojs*sizeof(float));
proj_wrapper(p4t, d_sino, d_image, dimslice);
// cp_call_sqrt(d_Sigma, d_sino, num_bins, nprojs);
cp_call_abs(d_Sigma, d_sino, num_bins, nprojs);
// Renormalize Sigma so that mean(Sigma) = 1
cp_normalize_mean(d_Sigma, num_bins, nprojs);
// // DEBUG
// float* h_Sigma = (float*) calloc(num_bins*nprojs, sizeof(float));
// FILE* fid = fopen("Sigma.dat", "wb");
// cudaMemcpy(h_Sigma, d_Sigma, num_bins*nprojs*sizeof(float), cudaMemcpyDeviceToHost);
// fwrite(h_Sigma, sizeof(float), num_bins*nprojs, fid);
// fclose(fid);
// fid = fopen("data.dat", "wb");
// cudaMemcpy(h_Sigma, d_data, num_bins*nprojs*sizeof(float), cudaMemcpyDeviceToHost);
// fwrite(h_Sigma, sizeof(float), num_bins*nprojs, fid);
// fclose(fid);
// // -------
// Run TV reconstruction with modified fidelity term incorporating the "Sigma" metric
p4t.ctxstruct->FLUO_step = 2;
p4t.ctxstruct->d_Sigma = d_Sigma;
for (int k = 0; k < p4t.ctxstruct->FLUO_ITERS; k++) {
p4t.ctxstruct->verbosity = 0;
chambolle_pock_main_rings(p4t, d_sino, d_image, d_data, n_it, beta, beta_rings, rings_height, alpha_rings);
p4t.ctxstruct->verbosity = verbosity;
if (verbosity > 2) {
float sigmanorm = cublasSasum(num_bins*nprojs, d_Sigma, 1);
// sigmanorm *= sigmanorm;
printf("[FLUO 2/2] Reconstruction %d : S = %e\n", k, sigmanorm);
}
// Update Sigma
proj_wrapper(p4t, d_sino, d_image, dimslice);
// cp_call_sqrt(d_Sigma, d_sino, num_bins, nprojs);
cp_call_abs(d_Sigma, d_sino, num_bins, nprojs);
cp_normalize_mean(d_Sigma, num_bins, nprojs);
}
cudaFree(d_Sigma);
return 0;
}
///-----------------------------------------------------------------------------
///------------------------ Param/noise Estimation -----------------------------
///-----------------------------------------------------------------------------
/// pass 1: horizontal convolution with [1, -2, 1]
__global__ void convolve_laplacian_kernel_pass1(
float * input,
float * output,
int IMG_W,
int IMG_H)
{
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidy < IMG_H && gidx < IMG_W) {
int tid = gidy*IMG_W + gidx;
// "Valid" convolution, ignore the edges
if (1 <= gidx && gidx <= IMG_W-2) {
output[tid] = input[tid-1] - 2*input[tid] + input[tid+1];
}
else output[tid] = 0;
}
}
/// pass 2: vertical convolution with [1, -2, 1]
__global__ void convolve_laplacian_kernel_pass2(
float * input,
float * output,
int IMG_W,
int IMG_H)
{
int gidx = threadIdx.x + blockIdx.x*blockDim.x;
int gidy = threadIdx.y + blockIdx.y*blockDim.y;
if (gidy < IMG_H && gidx < IMG_W) {
// "Valid" convolution, ignore the edges
if (1 <= gidy && gidy <= IMG_H-2) {
output[gidy*IMG_W + gidx] = input[(gidy-1)*IMG_W + gidx] - 2*input[gidy*IMG_W + gidx] + input[(gidy+1)*IMG_W + gidx];
}
else output[gidy*IMG_W + gidx] = 0;
}
}
int call_convolve_laplacian(float* d_data_out, float* d_data_in, float* d_data_tmp, int Nx, int Ny) {
dim3 grd, blk;
blk = dim3(blsize_cufft, blsize_cufft, 1);
grd = dim3(iDivUp_cp(Nx, blsize_cufft), iDivUp_cp(Ny, blsize_cufft), 1);
convolve_laplacian_kernel_pass1<<<grd, blk>>>(d_data_in, d_data_tmp, Nx, Ny);
convolve_laplacian_kernel_pass2<<<grd, blk>>>(d_data_tmp, d_data_out, Nx, Ny);
return 0;
}
/// Estimate the noise std for Gaussian noise data.
/// Reference
/// ----------
/// Fast Noise Variance Estimation
/// COMPUTER VISION AND IMAGE UNDERSTANDING
/// Vol. 64, No. 2, September, pp. 300–302, 1996
/// ARTICLE NO 0060
float estimate_noise_std(float* d_data, int Nx, int Ny) {
float* d_data_out, *d_data_tmp;
cudaMalloc(&d_data_out, Nx*Ny*sizeof(float));
cudaMalloc(&d_data_tmp, Nx*Ny*sizeof(float));
call_convolve_laplacian(d_data_out, d_data, d_data_tmp, Nx, Ny);
// DEBUG
write_device_array(d_data_out, Nx*Ny, "laplacian.edf");
//
float res = cublasSasum(Nx*Ny, d_data_out, 1);
res *= sqrtf(M_PI_2)/(6.0f*(Nx-2)*(Ny-2));
cudaFree(d_data_out);
cudaFree(d_data_tmp);
return res;
}
/// Experimental !
/// arcsinh(2/3 * sigma * sqrt(2*log(N)))
/// sigma = estimate of noise std
/// N = total number of samples (pixels)
float estimate_regularization_parameter(float* d_fbp_slice, int Nx, int Ny) {
float sigma = estimate_noise_std(d_fbp_slice, Nx, Ny);
return asinh( 2.0/3 * sigma * sqrt(2*log(Nx*Ny)) );
}
///-----------------------------------------------------------------------------
///-----------------------------------------------------------------------------
///-----------------------------------------------------------------------------
///-----------------------------------------------------------------------------
/// ---------------------- chambollepock.cu entry point ------------------------
///-----------------------------------------------------------------------------
int chambolle_pock_driver(Gpu_Context* self, float* data, float* SLICE, float DETECTOR_DUTY_RATIO, int DETECTOR_DUTY_OVERSAMPLING, float beta, float beta_rings, float rings_height, float alpha_rings) {
if (CP_VERBOSE) {
puts("------------------------------------------------------------------------------");
puts("------------------ Entering Chambolle-Pock driver ----------------------------");
puts("------------------------------------------------------------------------------");
}
cuCtxSetCurrent ( *((CUcontext *) self->gpuctx )) ;
//Import parameters from self
int num_bins = self->num_bins;
int nprojs_span = self->nprojs_span;
int num_projs = self->nprojs_span;
int dimslice = self->num_x ;
ParamsForTomo p4t = (ParamsForTomo) { (Gpu_Context*) self, DETECTOR_DUTY_RATIO, DETECTOR_DUTY_OVERSAMPLING } ;
//Prepare cuFFT plan for FBP
CUDA_SAFE_CALL(cudaMalloc(&self->precond_params_dl.d_r_sino_error, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftReal)));
CUDA_SAFE_CALL(cudaMalloc(&self->precond_params_dl.d_i_sino_error, fftbunch*nextpow2_cp_padded(num_bins)*sizeof(cufftComplex)));
static int plans_are_computed = 0;
if(!plans_are_computed) {
CUDA_SAFE_FFT(cufftPlan1d((cufftHandle *) &self->precond_params_dl.planRamp_forward, nextpow2_cp_padded(num_bins),CUFFT_R2C,fftbunch));
CUDA_SAFE_FFT(cufftPlan1d((cufftHandle *) &self->precond_params_dl.planRamp_backward,nextpow2_cp_padded(num_bins),CUFFT_C2R,fftbunch));
plans_are_computed = 1;
}
cufftComplex* d_i_discrete_ramp = cp_compute_discretized_ramp_filter(nextpow2_cp_padded(num_bins), self->precond_params_dl.d_r_sino_error, self->precond_params_dl.d_i_sino_error, self->precond_params_dl.planRamp_forward);
self->precond_params_dl.filter_coeffs = d_i_discrete_ramp; //size : nextpow2(num_bins)/2+1
//Allocate memory
float* d_sino, *d_image, *d_data;
CUDA_SAFE_CALL(cudaMalloc(&d_sino, num_bins*nprojs_span*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&d_image, dimslice*dimslice*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&d_data, num_bins*nprojs_span*sizeof(float)));
CUDA_SAFE_CALL(cudaMemcpy(d_data, data, num_bins*nprojs_span*sizeof(float), cudaMemcpyHostToDevice ));
CUDA_SAFE_CALL(cudaMemcpy(d_sino, d_data, num_bins*nprojs_span*sizeof(float), cudaMemcpyDeviceToDevice ));
CUDA_SAFE_CALL(cudaMemset(d_image, 0, dimslice*dimslice*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&global_sino_tmp, num_bins*num_projs*sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc(&global_slice_tmp, dimslice*dimslice*sizeof(float)));
// Estimate beta ?
if (p4t.ctxstruct->ESTIMATE_BETA) {
puts("----------------------------------------------");
puts("Estimating the regularization parameter...");
// TODO: if this works, clean-up !
float* d_image2;
cudaMalloc(&d_image2, dimslice*dimslice*sizeof(float));
int doprec = p4t.ctxstruct->DO_PRECONDITION;
p4t.ctxstruct->DO_PRECONDITION = 1;
backproj_wrapper(p4t, d_data, d_image2);
p4t.ctxstruct->DO_PRECONDITION = doprec;
float beta2 = estimate_regularization_parameter(d_image2, dimslice, dimslice);
cudaFree(d_image2);
printf("Computed beta = %f\n", beta2);
puts("----------------------------------------------");
beta = beta2;
}
// Run the algorithm
if (!p4t.ctxstruct->FLUO_SINO) {
chambolle_pock_main_rings(p4t, d_sino, d_image, d_data, self->ITERATIVE_CORRECTIONS, beta, beta_rings, rings_height, alpha_rings);
}
else {
cp_fluo(p4t, d_sino, d_image, d_data, self->ITERATIVE_CORRECTIONS, beta, beta_rings, rings_height, alpha_rings);
}
cudaMemcpy( SLICE, d_image, dimslice*dimslice*sizeof(float), cudaMemcpyDeviceToHost);
// Free memory
CUDA_SAFE_CALL(cudaFree(d_sino));
CUDA_SAFE_CALL(cudaFree(d_image));
CUDA_SAFE_CALL(cudaFree(d_data));
CUDA_SAFE_CALL(cudaFree(self->precond_params_dl.d_r_sino_error));
CUDA_SAFE_CALL(cudaFree(self->precond_params_dl.d_i_sino_error));
CUDA_SAFE_CALL(cudaFree(self->precond_params_dl.filter_coeffs));
cudaFree(global_sino_tmp);
cudaFree(global_slice_tmp);
return 0;
}
|