File: congrid.py

package info (click to toggle)
pyhst2 2020c-7
  • links: PTS, VCS
  • area: contrib
  • in suites: bookworm, sid
  • size: 13,540 kB
  • sloc: ansic: 11,807; python: 9,708; cpp: 6,786; makefile: 152; sh: 31
file content (110 lines) | stat: -rw-r--r-- 4,036 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function


import numpy as n
import scipy.interpolate
import scipy.ndimage

def congrid(a, newdims, method='linear', centre=False, minusone=False):
    '''Arbitrary resampling of source array to new dimension sizes.
    Currently only supports maintaining the same number of dimensions.
    To use 1-D arrays, first promote them to shape (x,1).
    
    Uses the same parameters and creates the same co-ordinate lookup points
    as IDL''s congrid routine, which apparently originally came from a VAX/VMS
    routine of the same name.

    method:
    neighbour - closest value from original data
    nearest and linear - uses n x 1-D interpolations using
                         scipy.interpolate.interp1d
    (see Numerical Recipes for validity of use of n 1-D interpolations)
    spline - uses ndimage.map_coordinates

    centre:
    True - interpolation points are at the centres of the bins
    False - points are at the front edge of the bin

    minusone:
    For example- inarray.shape = (i,j) & new dimensions = (x,y)
    False - inarray is resampled by factors of (i/x) * (j/y)
    True - inarray is resampled by(i-1)/(x-1) * (j-1)/(y-1)
    This prevents extrapolation one element beyond bounds of input array.
    '''
    if not a.dtype in [n.float64, n.float32]:
        a = n.cast[float](a)

    m1 = n.cast[int](minusone)
    ofs = n.cast[int](centre) * 0.5
    old = n.array( a.shape )
    ndims = len( a.shape )
    if len( newdims ) != ndims:
        print( "[congrid] dimensions error. " \
              "This routine currently only support " \
              "rebinning to the same number of dimensions.")
        return None
    newdims = n.asarray( newdims, dtype=float )
    dimlist = []

    if method == 'neighbour':
        for i in range( ndims ):
            base = n.indices(newdims)[i]
            dimlist.append( (old[i] - m1) // (newdims[i] - m1) \
                            * (base + ofs) - ofs )
        cd = n.array( dimlist ).round().astype(int)
        newa = a[list( cd )]
        return newa

    elif method in ['nearest','linear']:
        # calculate new dims
        for i in range( ndims ):
            base = n.arange( newdims[i] )
            dimlist.append( (old[i] - m1) // (newdims[i] - m1) \
                            * (base + ofs) - ofs )
        # specify old dims
        olddims = [n.arange(i, dtype = n.float) for i in list( a.shape )]

        # first interpolation - for ndims = any
        mint = scipy.interpolate.interp1d( olddims[-1], a, kind=method , bounds_error=False, fill_value=0)
        newa = mint( dimlist[-1] )

        trorder = [ndims - 1] + range( ndims - 1 )
        for i in range( ndims - 2, -1, -1 ):
            newa = newa.transpose( trorder )

            mint = scipy.interpolate.interp1d( olddims[i], newa, kind=method, bounds_error=False, fill_value=0 )
            newa = mint( dimlist[i] )

        if ndims > 1:
            # need one more transpose to return to original dimensions
            newa = newa.transpose( trorder )

        return newa
    elif method in ['spline']:
        oslices = [ slice(0,j) for j in old ]
        oldcoords = n.ogrid[oslices]
        nslices = [ slice(0,j) for j in list(newdims) ]
        newcoords = n.mgrid[nslices]

        newcoords_dims = range(n.rank(newcoords))
        #make first index last
        newcoords_dims.append(newcoords_dims.pop(0))
        newcoords_tr = newcoords.transpose(newcoords_dims)
        # makes a view that affects newcoords

        newcoords_tr += ofs

        deltas = (n.asarray(old) - m1) // (newdims - m1)
        newcoords_tr *= deltas

        newcoords_tr -= ofs

        newa = scipy.ndimage.map_coordinates(a, newcoords)
        return newa
    else:
        print ("Congrid error: Unrecognized interpolation type.\n", \
              "Currently only \'neighbour\', \'nearest\',\'linear\',", \
              "and \'spline\' are supported.")
        return None