1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
"""@package docstring
Encoding and decoding python native data structures as
portable JData-spec annotated dict structure
Copyright (c) 2019 Qianqian Fang <q.fang at neu.edu>
"""
__all__ = ['encode','decode','jdtype','jsonfilter']
##====================================================================================
## dependent libraries
##====================================================================================
import numpy as np
import copy
import zlib
import base64
try:
import lzma
except ImportError:
from backports import lzma
##====================================================================================
## global variables
##====================================================================================
""" @brief Mapping Numpy data types to JData data types
complex-valued data are reflected in the doubled data size
"""
jdtype={'float32':'single','float64':'double','float_':'double',
'bool':'uint8','byte':'int8','short':'int16','ubyte':'uint8',
'ushort':'uint16','int_':'int32','uint':'uint32','complex_':'double','complex128':'double',
'longlong':'int64','ulonglong':'uint64','csingle':'single','cdouble':'double'};
_zipper=['zlib','gzip','lzma'];
##====================================================================================
## Python to JData encoding function
##====================================================================================
def encode(d, opt={}):
"""@brief Encoding a Python data structure to portable JData-annotated dict constructs
This function converts complex data types (usually not JSON-serializable) into
portable JData-annotated dict/list constructs that can be easily exported as JSON/JData
files
@param[in,out] d: an arbitrary Python data
@param[in] opt: options, can contain 'compression'=['zlib','lzma','gzip'] for data compression
"""
if isinstance(d, float):
if(np.isnan(d)):
return '_NaN_';
elif(np.isinf(d)):
return '_Inf_' if (d>0) else '-_Inf_';
return d;
elif isinstance(d, list) or isinstance(d, tuple) or isinstance(d, set) or isinstance(d, frozenset):
return encodelist(d,opt);
elif isinstance(d, dict):
return encodedict(d,opt);
elif isinstance(d, complex):
newobj={
'_ArrayType_': 'double',
'_ArraySize_': 1,
'_ArrayIsComplex_': True,
'_ArrayData_': [d.real, d.imag]
};
return newobj;
elif isinstance(d, np.ndarray):
newobj={};
newobj["_ArrayType_"]=jdtype[str(d.dtype)] if (str(d.dtype) in jdtype) else str(d.dtype);
newobj["_ArraySize_"]=list(d.shape);
if(d.dtype==np.complex64 or d.dtype==np.complex128 or d.dtype==np.csingle or d.dtype==np.cdouble):
newobj['_ArrayIsComplex_']=True;
newobj['_ArrayData_']=[list(d.flatten().real), list(d.flatten().imag)];
else:
newobj["_ArrayData_"]=list(d.flatten());
if('compression' in opt):
if(opt['compression'] not in _zipper):
raise Exception('JData', 'compression method is not supported')
newobj['_ArrayZipType_']=opt['compression'];
newobj['_ArrayZipSize_']=[1+int('_ArrayIsComplex_' in newobj), d.size];
newobj['_ArrayZipData_']=np.asarray(newobj['_ArrayData_'],dtype=d.dtype).tostring();
if(opt['compression']=='zlib'):
newobj['_ArrayZipData_']=zlib.compress(newobj['_ArrayZipData_']);
elif(opt['compression']=='gzip'):
newobj['_ArrayZipData_']=zlib.compress(newobj['_ArrayZipData_'],zlib.MAX_WBITS|32);
elif(opt['compression']=='lzma'):
newobj['_ArrayZipData_']=lzma.compress(newobj['_ArrayZipData_'],lzma.FORMAT_ALONE);
if(('base64' in opt) and (opt['base64'])):
newobj['_ArrayZipData_']=base64.b64encode(newobj['_ArrayZipData_']);
newobj.pop('_ArrayData_');
return newobj;
else:
return copy.deepcopy(d);
##====================================================================================
## JData to Python decoding function
##====================================================================================
def decode(d, opt={}):
"""@brief Decoding a JData-annotated dict construct into native Python data
This function converts portable JData-annotated dict/list constructs back to native Python
data structures
@param[in,out] d: an arbitrary Python data, any JData-encoded components will be decoded
@param[in] opt: options
"""
if (isinstance(d, str) or type(d)=='unicode') and len(d)<=6 and len(d)>4 and d[-1]=='_':
if(d=='_NaN_'):
return float('nan');
elif(d=='_Inf_'):
return float('inf');
elif(d=='-_Inf_'):
return float('-inf');
return d;
elif isinstance(d, list) or isinstance(d, tuple) or isinstance(d, set) or isinstance(d, frozenset):
return decodelist(d,opt);
elif isinstance(d, dict):
if('_ArrayType_' in d):
if(isinstance(d['_ArraySize_'],str)):
d['_ArraySize_']=np.array(bytearray(d['_ArraySize_']));
if('_ArrayZipData_' in d):
newobj=d['_ArrayZipData_']
if(('base64' in opt) and (opt['base64'])):
newobj=base64.b64decode(newobj)
if('_ArrayZipType_' in d and d['_ArrayZipType_'] not in _zipper):
raise Exception('JData', 'compression method is not supported')
if(d['_ArrayZipType_']=='zlib'):
newobj=zlib.decompress(bytes(newobj))
elif(d['_ArrayZipType_']=='gzip'):
newobj=zlib.decompress(bytes(newobj),zlib.MAX_WBITS|32)
elif(d['_ArrayZipType_']=='lzma'):
newobj=lzma.decompress(bytes(newobj),lzma.FORMAT_ALONE)
newobj=np.fromstring(newobj,dtype=np.dtype(d['_ArrayType_'])).reshape(d['_ArrayZipSize_']);
if('_ArrayIsComplex_' in d and newobj.shape[0]==2):
newobj=newobj[0]+1j*newobj[1];
newobj=newobj.reshape(list(d['_ArraySize_']));
return newobj;
elif('_ArrayData_' in d):
if(isinstance(d['_ArrayData_'],str)):
newobj=np.frombuffer(d['_ArrayData_'],dtype=np.dtype(d['_ArrayType_']));
else:
newobj=np.asarray(d['_ArrayData_'],dtype=np.dtype(d['_ArrayType_']));
if('_ArrayZipSize_' in d and newobj.shape[0]==1):
if(isinstance(d['_ArrayZipSize_'],str)):
d['_ArrayZipSize_']=np.array(bytearray(d['_ArrayZipSize_']));
newobj=newobj.reshape(d['_ArrayZipSize_']);
if('_ArrayIsComplex_' in d and newobj.shape[0]==2):
newobj=newobj[0]+1j*newobj[1];
newobj=newobj.reshape(d['_ArraySize_']);
return newobj;
else:
raise Exception('JData', 'one and only one of _ArrayData_ or _ArrayZipData_ is required')
return decodedict(d,opt);
else:
return copy.deepcopy(d);
##====================================================================================
## helper functions
##====================================================================================
def jsonfilter(obj):
if type(obj) == 'long':
return str(obj)
elif type(obj).__module__ == np.__name__:
if isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj.item()
elif isinstance(obj, float):
if(np.isnan(obj)):
return '_NaN_';
elif(np.isinf(obj)):
return '_Inf_' if (obj>0) else '-_Inf_';
def encodedict(d0, opt={}):
d=dict(d0);
for k, v in d0.items():
newkey=encode(k,opt)
d[newkey]=encode(v,opt);
if(k!=newkey):
d.pop(k)
return d;
def encodelist(d0, opt={}):
d=copy.deepcopy(d0)
for i, s in enumerate(d):
d[i] = encode(s,opt);
return d;
def decodedict(d0, opt={}):
d=dict(d0);
for k, v in d.items():
newkey=encode(k,opt)
d[newkey]=decode(v,opt);
if(k!=newkey):
d.pop(k)
return d;
def decodelist(d0, opt={}):
d=copy.deepcopy(d0)
for i, s in enumerate(d):
d[i] = decode(s,opt);
return d;
|