1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
# $Id: database.krb f163995c2be9 2010-02-25 mtnyogi $
#
# Copyright © 2008 Bruce Frederiksen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# This logic adds inheritance to the database tables. This means that when
# table A includes a foreign key to table B, all of the columns in table B are
# inherited by table A and can be used as if they appeared directly in table A.
# The logic will automatically add the necessary joins from table A to table B.
# This inheritance goes on any number of levels, so columns inherited by
# table B are also included in table A.
#
# This example is simplified in the following ways:
# - it is assumed that the primary key to all tables is called 'id'.
# - it is assumed that all foreign keys linking to table 'B' are called
# 'B_id'.
# - functions and operators are not supported (in the 'where' or 'select'
# clause).
# - thus no aggregation is possible; so no need for a "group by" clause
# which would otherwise be added automatically.
# - updates are not supported (insert, update, delete).
# - column_name qualification is not supported to disambiguate between
# multiple columns being inherited with the same name.
# get_data($starting_tables, $needed_data) taking(db_cursor, starting_keys)
#
# This is the top-level goal to generate a plan to retrieve a set of data.
# Input goal arguments:
# $starting_tables - a tuple of table_names that keys will be
# provided for when the plan is called (e.g.,
# ('movie',)).
# $needed_data - a tuple of data descriptors describing the data
# that should be returned (as a dict) from
# executing the plan. Each data descriptor is one
# of the following:
# column_name
# -- binds a single (ie, unique) value to
# column_name
# (name, (option...), needed_data...)
# -- binds a tuple of dictionaries to name
# -- an option is:
# ('linked_to' table_name)
# -- table_name is the "1" table in
# the many_to_1 link
# ('order_by' 'asc'|'desc'|column_name...)
# -- needed_data can only be a column_name at
# this point (no nested multirow queries).
# plan arguments:
# db_cursor - an open cursor to the database.
# starting_keys - a dict mapping the table_names in
# $starting_tables to their key values (e.g.,
# {'movie': 4}).
# plan return:
# The plan returns a dict mapping the names in $needed_data to their
# values from the database.
get_data
use get_data($starting_tables, $needed_data)
taking(db_cursor, starting_keys)
when
#python print "get_data: starting_tables: %s" % str($starting_tables)
#python print "get_data: needed_data: %s" % str($needed_data)
!parse_needed_data($starting_tables, $needed_data,
$multi_plans, $unique_queries)
!process_unique_queries($unique_queries)
ans = {}
$$(db_cursor, starting_keys, ans)
with
for row_name, plan in $multi_plans:
ans[row_name] = plan(db_cursor, starting_keys)
return ans
# parse_needed_data($starting_tables, $needed_data,
# $multi_plans, $unique_queries)
#
# This parses all of the $needed_data and produces two outputs: one for the
# multi_row data, and the other for the unique data.
# Input goal arguments:
# $starting_tables - a tuple of table_names that keys will be
# provided for when the plan is called (e.g.,
# ('movie',)).
# $needed_data - a tuple of data descriptors describing the data
# that should be returned (as a dict) from
# executing the plan. Each data descriptor is one
# of the following:
# column_name
# -- binds a single (ie, unique) value to
# column_name
# (name, (option...), needed_data...)
# -- binds a tuple of dictionaries to name
# -- an option is:
# ('linked_to' table_name)
# -- table_name is the "1" table in
# the many_to_1 link
# ('order_by' 'asc'|'desc'|column_name...)
# -- needed_data can only be a column_name at
# this point (no nested multirow queries).
# Output goal arguments:
# $multi_plans - A tuple of two-tuples; one for each request
# for multi-row data. Each two-tuple has:
# row_name
# - the key to set in the top-level dict.
# plan
# - a function taking (db_cursor,
# starting_keys)
# $unique_queries - A tuple of three-tuples; one for each
# request for a unique data value. Each
# three-tuple has:
# from clause
# - a tuple starting with table_name_a
# followed by:
# (table_name_b, from_table,
# from_columns, b_columns)...
# select clause
# - a column_name in the last table of the
# from clause
# name binding
# - the key in the resulting dict
# No plan is returned.
parse_needed_data
use parse_needed_data($starting_tables, $needed_data,
$multi_plans, $unique_queries)
when
#python print "parse_needed_data(%s, %s, _, _)" % \
# ($starting_tables, $needed_data)
# Note difference between multi_plans and $multi_plans!
python multi_plans = []
python unique_queries = []
forall
$needed_element in $needed_data
require
parse_needed_element($starting_tables, $needed_element,
$multi_plan, $unique_queries1)
python if $multi_plan: multi_plans.append($multi_plan)
python if $unique_queries1: unique_queries.append($unique_queries1)
$multi_plans = tuple(multi_plans)
$unique_queries = tuple(unique_queries)
# parse_needed_element($starting_tables, $needed_element,
# $multi_plan, $unique_query)
#
# This processes one element in $needed_data.
# Input goal arguments:
# $starting_tables - a tuple of table_names that keys will be
# provided for when the plan is called (e.g.,
# ('movie',)).
# $needed_element - one of the following:
# column_name
# -- binds a single (ie, unique) value to
# column_name
# (name, (option...), needed_data...)
# -- binds a tuple of dictionaries to name
# -- an option is:
# ('linked_to' table_name)
# -- table_name is the "1" table in
# the many_to_1 link
# ('order_by' 'asc'|'desc'|column_name...)
# -- needed_data can only be a column_name at
# this point (no nested multirow queries).
# Output goal arguments:
# $multi_plan - a two-tuple: (row_name, plan), or None
# row_name
# - the key to set in the top-level dict.
# plan
# - a function taking (db_cursor,
# starting_keys)
# $unique_query - This element is a three-tuple or None:
# from clause
# - a tuple starting with table_name_a
# followed by:
# (table_name_b, from_table,
# from_columns, b_columns)...
# select clause
# - a column_name in the last table of the
# from clause
# name binding
# - the key in the resulting dict
# No plan is returned.
parse_needed_element_multi
use parse_needed_element($starting_tables,
($row_name, $options, *$multi_data),
($row_name, $plan),
None)
when
# Multi-row request.
special.claim_goal()
get_multi($starting_tables, $options, $multi_data, $plan)
parse_needed_element_unique
use parse_needed_element($starting_tables, $unique_data, None, $unique_out)
when
# Single-row (unique) request.
get_unique($starting_tables, $unique_data, $unique_out)
# get_unique($starting_tables, $column, $unique_query)
#
# This processes one column in $needed_data.
# Input goal arguments:
# $starting_tables - a tuple of table_names that keys will be
# provided for when the plan is called (e.g.,
# ('movie',)).
# $column - the desired column_name
# Output goal arguments:
# $unique_query - A three-tuple:
# from clause
# - a tuple starting with table_name_a
# followed by:
# (table_name_b, from_table,
# from_columns, b_columns)...
# select clause
# - a column_name in the last table of the
# from clause
# name binding
# - the key in the resulting dict
# No plan is returned.
get_unique_direct
use get_unique($starting_tables, $column, (($table), $column, $column))
when
# This handles the case where $column is directly in one of the
# $starting_tables.
lookup_column($column, $starting_tables, $table)
special.claim_goal()
# lookup_column sets $table to None if there were multiple matches...
# (which is an error and should cause get_unique to fail).
check $table
get_unique_indirect
use get_unique($starting_tables, $column, ($from_clause, $column, $column))
when
# This handles the case where $column is inherited into one of the
# $starting_tables.
lookup_indirect(1, $column, $starting_tables, $from_clause)
# lookup_column($column, $starting_tables, $table)
#
# This figures out which unique table within $starting_tables contains $column.
#
# This succeeds with None, after printing an error message, if $column appears
# in more than one $table within $starting_tables. This is done so that the
# invoking goal does not try to find inherited columns in this situation.
#
# It fails if none of the tables in $starting_tables contain $column.
#
# Input goal arguments:
# $column - The desired column_name.
# $starting_tables - A tuple of table_names.
# Output goal arguments:
# $table - The table_name of the table in $starting_tables
# containing $column, or None.
# No plan is returned.
lookup_column
use lookup_column($column, $starting_tables, $table)
when
# Find all of the tables in $starting_tables that have $column.
find_columns($column, $starting_tables, $tables)
unique_table($column, $tables, $table)
# find_columns($column, $tables_in, $matching_tables)
#
# Produces a list of the table in $tables_in that directly contain $column.
# Input goal arguments:
# $column - The column_name to look for.
# $tables_in - A tuple of table_names.
# Output goal arguments:
# $matching_tables - A tuple of the table_names in $tables_in that
# directly contain $column.
# No plan is returned.
find_columns
use find_columns($column, $tables_in, $matching_tables)
when
python matching_tables = []
forall
$table in $tables_in
schema.column($table, $column, $_, $_, $_, $_, $_)
python matching_tables.append($table)
$matching_tables = tuple(matching_tables)
# unique_table($column, $table_list, $table)
#
# This checks to see if $table_list contains only one table.
#
# If so, it returns it.
# If $table_list is empty, it fails.
# If $table_list has more than one table, it prints an error message and
# succeeds with $table set to None.
#
# Input goal arguments:
# $column - The column_name to use in the error message.
# $table_list - A tuple of table_names.
# Output goal arguments:
# $table - The table_name of the only table in $table_list,
# or None.
# No plan is returned.
unique_table_success
use unique_table($_, ($table), $table)
when
# A single table was found: Success!
special.claim_goal()
unique_table_not_found
use unique_table($_, (), $_)
when
# No tables were found: cause the unique_table goal to fail!
special.claim_goal()
check False
unique_table_dups
use unique_table($column, $tables, None)
when
# Multiple tables were found!
# Print error message:
python print "duplicate column %s, found in %s" % ($column, $tables)
# Then succeed with None to flag the problem...
# lookup_indirect($depth, $column, $starting_tables, $from_clause)
#
# This implements a depth first search of the tables inherited by the tables
# in $starting_tables looking for $column. It calls itself recursively to
# search at ever greater $depth values (starting with 1).
#
# It will fail if the $column can't be found, or if the $column exists in more
# than one inherited table at the same $depth when first encountered. (It's
# OK if the first encounter is unique, but there are more $columns at a
# greater depth).
#
# No plan is returned.
lookup_indirect
use lookup_indirect($depth, $column, $starting_tables, $from_clause)
when
#python print "lookup_indirect: "
# "find_at_depth(%s, %s, %s, _, _)" %
# ($depth, $column, $starting_tables)
!find_at_depth($depth, $column, $starting_tables,
$got_depth, $from_clauses)
#python print "lookup_indirect: "
# "lookup_indirect2(%s, %s, %s, %s, %s, _)" %
# ($depth, $column, $starting_tables, $got_depth,
# $tables)
lookup_indirect2($depth, $column, $starting_tables, $got_depth,
$from_clauses, $from_clause)
# lookup_indirect2($depth, $column, $starting_tables, $got_depth, $from_clauses,
# $from_clause)
#
# This finishes the job for lookup_indirect after find_at_depth has looked for
# $column at $depth. $got_depth is a bool indicating whether there were any
# inherited tables at $depth. This is how lookup_indirect2 knows when to stop
# searching at greater depths.
#
# No plan is returned.
lookup_indirect2_success
# $column found in one table. Success!
use lookup_indirect2($_depth, $_column, $_starting_tables, $_got_depth,
($from_clause), $from_clause)
when
# Found it!
special.claim_goal()
lookup_indirect2_next_depth
# $column not found, but there are still tables at this $depth.
# Try the next higher $depth...
use lookup_indirect2($depth, $column, $starting_tables, True, (),
$from_clause)
when
# $column not found, but the inherited tables haven't hit $depth yet!
special.claim_goal()
$depth2 = $depth + 1
lookup_indirect($depth2, $column, $starting_tables, $from_clause)
lookup_indirect2_dups
# We're using $got_depth of True here so that we don't match empty $froms.
# We can do this because $got_depth must be True if there are any $froms.
# If $got_depth is False, let lookup_indirect2 fail silently...
use lookup_indirect2($_depth, $column, $_starting_tables, True, $froms, $_)
when
python print "duplicate tables for %s: %s" % \
($column, tuple(from_[0] for from_ in $froms))
check False
# find_at_depth($depth, $column, $starting_tables, $got_depth, $from_clauses)
#
# This looks for $column at an inheritance depth of $depth from each table in
# $starting_tables. It returns $got_depth of True if any tables were found at
# this depth and the $from_clauses of all the matches.
#
# No plan is returned.
find_at_depth
use find_at_depth($depth, $column, $starting_tables,
$got_depth, $from_clauses)
when
python got_depth = False
python from_clauses = []
forall
$table in $starting_tables
require
($got_depth1, $from) = find_at_depth1(engine, $depth, $column,
$table)
python got_depth = got_depth or $got_depth1
python from_clauses.extend($from)
$got_depth = got_depth
$from_clauses = tuple(from_clauses)
# process_unique_queries($unique_queries) taking(db_cursor, starting_keys, dict)
#
# This groups queries from a common root table into one sql select statement
# to minimize the number of sql statements issued to the database. It does
# this by:
# 1. Taking the first item in $unique_queries
# 2. Going through the rest of the items in $unique_queries sorting out
# those that can be combined and those that can't.
# 3. For all of the combined queries it generates a single sql select
# statement.
# 4. Then it repeats the process on those queries that can't be combined
# until no queries remain.
#
# It returns a plan that will execute these sql statements and populate a dict
# with the answers.
process_unique_queries_done
# All done!
use process_unique_queries(()) taking(db_cursor, starting_keys, dict)
with
pass
process_unique_queries_step
use process_unique_queries((($from, $select, $key), *$rest))
taking(db_cursor, starting_keys, dict)
when
$select2 = "%s.%s" % (($from[0] if len($from) == 1 else $from[-1][0]),
$select)
#python print "process_unique_queries_step: " \
# "combine_queries(%s, %s, _, _)" % \
# (($from, ($select2,), ($key,)), $rest)
!combine_queries(($from, ($select2), ($key)), $rest, $combined_query,
$uncombined_queries)
#python print "process_unique_queries_step: combined_query is: %s" % \
# str($combined_query)
!run_query($combined_query)
$$(db_cursor, starting_keys, dict)
!process_unique_queries($uncombined_queries)
$$(db_cursor, starting_keys, dict)
# combine_queries($unique_query, $rest_unique_queries,
# $combined_query, $uncombined_queries)
#
# This combines $unique_query with as many queries in $rest_unique_queries as
# it can. The combined query is returned in $combined_query and the
# uncombined queries are returned as a tuple in $uncombined_queries.
#
# No plan is returned.
combine_queries_done_n
# All done!
use combine_queries($query, (), $query, ())
combine_queries_match_n
# The next query in $rest_unique_queries can be combined!
use combine_queries((($table1, *$joins1), $select_columns1, $dict_keys1),
((($table1, *$joins2), $select_column2, $dict_key2),
*$rest),
$combined_query,
$uncombined_queries)
when
special.claim_goal()
#python print "merge_joins(%s, %s, $merged_join)" %
# ($joins1, $joins2)
!merge_joins($joins1, $joins2, $merged_join)
$select2 = "%s.%s" % (($table1 if not $joins2 else $joins2[-1][0]),
$select_column2)
!combine_queries((($table1, *$merged_join),
($select2, *$select_columns1),
($dict_key2, *$dict_keys1)),
$rest, $combined_query, $uncombined_queries)
combine_queries_match
# The next query in $rest_unique_queries can not be combined...
use combine_queries($query1, ($uncombined_query1, *$rest), $combined_query,
($uncombined_query1, *$uncombined_queries))
when
!combine_queries($query1, $rest, $combined_query, $uncombined_queries)
# merge_joins($joins1, $joins2, $merged_join)
#
# Merges two join clauses into one. It does this by determining how many of
# the leading tables match (if any) and then appending the unmatched tail of
# the second join clause to the end of the first join clause.
#
# This goal should never fail.
#
# Examples:
# merge_joins((table1, table2, table3), (table1, table2, table4),
# (table1, table2, table3, table4))
#
# merge_joins((table1, table2), (table3, table4),
# (table1, table2, table3, table4))
#
# merge_joins((table1, table2, table3), (table1, table2),
# (table1, table2, table3))
#
# No plan is returned.
merge_joins_match
# Merge joins with the same first table by merging the rest of the joins
# in each clause.
use merge_joins(($first_join, *$rest_joins1), ($first_join, *$rest_joins2),
($first_join, *$merged_joins))
when
special.claim_goal()
merge_joins($rest_joins1, $rest_joins2, $merged_joins)
merge_joins_no_match
# Merge joins with different first tables by concatenating the join
# clauses.
use merge_joins($joins1, $joins2, $merged_joins)
when
$merged_joins = $joins1 + $joins2
# run_query($combined_query) taking(db_cursor, starting_keys, dict)
#
# This constructs a sql select statement for $combined_query and returns a
# plan to run that select statement and populate a dict with the results.
run_query
use run_query((($table, *$joins), $select_columns, $dict_keys))
taking(db_cursor, starting_keys, dict)
when
#python print "make_from_clause(%s, %s, $from_clause)" % \
# ($table, $joins)
!make_from_clause($table, $joins, $from_clause)
command_parameters($param, id, $param_fn)
$sql_command = "select %s\n from %s\n where %s.id = %s" % \
(', '.join($select_columns), $from_clause, $table,
$param)
with
db_cursor.execute($sql_command, $param_fn(starting_keys[$table]))
if db_cursor.rowcount != -1 and db_cursor.rowcount is not None:
assert db_cursor.rowcount == 1, \
'expected unique row, got %d rows from "%s"' % \
(db_cursor.rowcount, $sql_command)
dict.update(zip($dict_keys, db_cursor.fetchone()))
else:
row = db_cursor.fetchone()
assert row is not None, \
'expected unique row, got 0 rows from "%s"' % ($sql_command,)
dict.update(zip($dict_keys, row))
assert db_cursor.fetchone() is None, \
'expected unique row, got >1 rows from "%s"' % ($sql_command,)
# make_from_clause($table, $joins, $from_clause)
#
# Creates the $from_clause for a sql select statement (as a string) starting
# with $table and including the $joins.
#
# No plan is returned.
make_from_clause
use make_from_clause($table, $joins, $from_clause)
when
python from_clause = $table
forall
$join in $joins
require
($table2, $from_table, $from_cols, $to_cols) = $join
python from_clause += "\n inner join %s on (%s)" % \
($table2,
' and '.join("%s.%s = %s.%s" %
($from_table, from_col, $table2, to_col)
for from_col, to_col
in zip($from_cols, $to_cols)))
$from_clause = from_clause
# get_multi($starting_tables, $options, $multi_data, $plan)
#
# This creates a $plan for retrieving the multi-row $multi_data starting from
# $starting_tables with any indicated $options.
# Input goal arguments:
# $starting_tables - a tuple of table_names that keys will be
# provided for when the plan is called (e.g.,
# ('movie',)).
# $options - a tuple of options. Currently, only two options
# are supported:
# ('linked_to', table_name)
# ('order_by', 'asc'|'desc'|column_name...)
# $multi_data - can only be a tuple of column_names at this point
# (no nested multirow queries).
# Output goal arguments:
# $plan - a function taking (db_cursor, starting_keys) that
# will return a tuple of dicts (one per row in the
# select result).
#
# No plan is attached to the goal. Instead, it is returned in $plan.
get_multi
use get_multi($starting_tables, $options, $multi_data, $plan)
when
$linked_to = dict($options).get('linked_to')
$order_by = dict($options).get('order_by')
get_multi2($starting_tables, $multi_data, $linked_to, $order_by, $plan)
# get_multi2($starting_tables, $multi_data, $linked_to, $order_by, $plan)
#
# This is a continuation of the get_multi goal (above) with the options pulled
# out separately.
#
# No plan is attached to the goal. Instead, it is returned in $plan.
get_multi2_no_linked_to
use get_multi2($starting_tables, $multi_data, None, $order_by, $plan)
when
special.claim_goal()
# Try each $unique_table in $starting_tables to find one that
# find_multi_from_unique likes.
# FIX: This should check for duplicates (ambiguous specification)!
$unique_table in $starting_tables
find_multi_from_unique($unique_table, $multi_data, $order_by, $plan)
get_multi2_linked_to
use get_multi2($starting_tables, $multi_data, $linked_to, $order_by,
$plan)
when
# FIX: This should allow $linked_to to be an inherited table
# Or should we allow specifying the multi-row table rather than
# (in addition to?) the linked_to table?
check $linked_to in $starting_tables
find_multi_from_unique($linked_to, $multi_data, $order_by, $plan)
# find_multi_from_unique($unique_table, $multi_data, $order_by, $plan)
#
# Finds a many-to-1 relationship between some table X (as the "many" end of
# the relationship) and $unique_table (as the "1" end of the relationship) and
# then creates a plan to retrieve the columns specified in $multi_data from
# that table X.
#
# No plan is attached to the goal. Instead, it is returned in $plan.
find_multi_from_unique
use find_multi_from_unique($unique_table, $multi_data, $order_by, $plan)
when
# FIX: This should check for duplicate possibilities (duplicate
# $multi_tables)!
schema.many_to_1($multi_table, $unique_table, ($multi_link_column), $_)
parse_needed_data(($multi_table), $multi_data, (), $unique_queries)
process_multi_queries($unique_queries, $combined_query)
run_multi_query($unique_table, $combined_query, $multi_link_column,
$order_by) as $plan
# process_multi_queries($unique_queries, $combined_query)
#
# This combines the $unique_queries into a single $combined_query.
#
# No plan is returned.
process_multi_queries_none
use process_multi_queries((), ())
process_multi_queries_some
use process_multi_queries((($from, $select, $key), *$rest), $combined_query)
when
$select2 = "%s.%s" % (($from[0] if len($from) == 1 else $from[-1][0]),
$select)
combine_queries(($from, ($select2), ($key)), $rest, $combined_query, ())
# run_multi_query($unique_table, $combined_query, $multi_link_column, $order_by)
# taking (db_cursor, starting_keys)
#
# This creates a sql select statement to retrieve multi-row data. The first
# table in $combined_query must link to $unique_table by $multi_link_column to
# generate the multiple rows.
#
# It generates a plan to execute this sql select statement and create a tuple
# of dicts, one per row in the select response.
#
# The plan returns a tuple of dictionaries
run_multi_query
use run_multi_query($unique_table,
(($table1, *$joins1), $select_columns, $dict_keys),
$multi_link_column, $order_by) \
taking (db_cursor, starting_keys)
when
!make_from_clause($table1, $joins1, $from_clause)
command_parameters($param, id, $param_fn)
# FIX: Add order_by
$sql_command = "select %s\n from %s\n where %s.%s = %s" % \
(', '.join($select_columns), $from_clause,
$table1, $multi_link_column, $param)
with
db_cursor.execute($sql_command, $param_fn(starting_keys[$unique_table]))
return tuple(dict(zip($dict_keys, row)) for row in db_cursor.fetchall())
format_params
use command_parameters('%s', $_param_name, $param_fn)
when
schema.paramstyle(format)
$param_fn = lambda param, prev_params = (): prev_params + (param,)
qmark_params
use command_parameters('?', $_param_name, $param_fn)
when
schema.paramstyle(qmark)
$param_fn = lambda param, prev_params = (): prev_params + (param,)
bc_extras
from pyke import goal
links_to = \
goal.compile('schema.links_to($depth, $table, $to_table, $joins)')
column_lookup = \
goal.compile('schema.column($to_table, $column, $_, $_, $_, $_, $_)')
def find_at_depth1(engine, depth, column, table):
got_depth = False
ans_joins = []
with links_to.prove(engine, depth=depth, table=table) as gen1:
for vars, bogus_plan1 in gen1:
to_table, joins = vars['to_table'], vars['joins']
got_depth = True
with column_lookup.prove(engine,
to_table=to_table, column=column) \
as gen2:
for bogus_vars, bogus_plan1 in gen2:
ans_joins.append((table,) + joins)
return got_depth, tuple(ans_joins)
|