1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Applying Expert System Technology to Code Reuse with Pyke</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="stylesheets/pyke.css" type="text/css" />
</head>
<body>
<table id="page-table">
<thead class="head">
<tr id="header1"><th id="header" colspan="3">
</th></tr>
<tr id="header2">
<th id="crumb-left"></th>
<th id="crumb-line">
<div id="nav">
<ul>
<li><a href="index.html">Home</a></li>
<li>></li>
<li>PyCon 2008 Paper</li>
</ul>
</div>
</th>
<th id="crumb-right"></th>
</tr>
</thead>
<tbody id="body">
<tr id="body-tr">
<td id="left-nav">
<div id="left-nav-div">
<div class="title-nav"><a href="index.html">Home</a></div><div class="nav-branch">
<div class="normal-nav"><a href="about_pyke/index.html">About Pyke</a></div>
<div class="normal-nav"><a href="logic_programming/index.html">Logic Programming</a></div>
<div class="normal-nav"><a href="knowledge_bases/index.html">Knowledge Bases</a></div>
<div class="normal-nav"><a href="pyke_syntax/index.html">Pyke Syntax</a></div>
<div class="normal-nav"><a href="using_pyke/index.html">Using Pyke</a></div>
<div class="normal-nav"><a href="examples.html">Examples</a></div>
<div class="normal-nav"><a href="PyCon2008-paper.html">PyCon 2008 Paper</a></div>
</div>
</div>
<div id="icons">
<div id="project-page">
<a href="http://sourceforge.net/projects/pyke/">Pyke Project Page</a>
</div>
Please Make a Donation:<br />
<a href="http://sourceforge.net/donate/index.php?group_id=207724">
<img src="http://images.sourceforge.net/images/project-support.jpg"
width="88" height="32" border="0"
alt="Support This Project" /> </a> <br /><br />
Hosted by: <br />
<a href="http://sourceforge.net/projects/pyke">
<img src="http://sflogo.sourceforge.net/sflogo.php?group_id=207724&type=14"
width="150" height="40"
alt="Get Python Knowledge Engine (PyKE) at SourceForge.net. Fast, secure and Free Open Source software downloads" /></a>
</div>
</td>
<td id="main-td">
<div id="main">
<a name="startcontent" id="startcontent"></a>
<div class="document" id="applying-expert-system-technology-to-code-reuse-with-pyke">
<h1 class="title">Applying Expert System Technology to Code Reuse with Pyke</h1>
<h2 class="subtitle" id="pycon-2008-chicago">PyCon 2008, Chicago</h2>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>Bruce Frederiksen</td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>Fri, 14 Mar 2008</td></tr>
<tr class="field"><th class="docinfo-name">Web:</th><td class="field-body">pyke.sourceforge.net</td>
</tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>© 2008, Bruce Frederiksen</td></tr>
</tbody>
</table>
<div class="section" id="abstract">
<h1><a class="toc-backref" href="#id2">Abstract</a></h1>
<p>This paper explores a new approach to code reuse using a backward-chaining
rule-based system, similar to prolog, to generate a function call graph <em>before</em>
the functions are called. This is compared with current solutions which build
the call graph <em>as</em> the functions are called.</p>
<p>This approach is introduced through an open source project called Pyke (Python
Knowledge Engine).</p>
<p>Finally, the initial results show that the utility of this approach far
exceeds expectations; leading to something more akin to automatic
programming rather than adaptable libraries. A call for help is given to
explore the capabilities of this approach across different domains.</p>
<div class="contents topic" id="contents">
<p class="topic-title first">Contents</p>
<ul class="simple">
<li><a class="reference internal" href="#abstract" id="id2">Abstract</a></li>
<li><a class="reference internal" href="#the-thinking-that-led-to-pyke" id="id3">The Thinking that Led to Pyke</a><ul>
<li><a class="reference internal" href="#the-need-for-code-reuse" id="id4">The Need for Code Reuse</a></li>
<li><a class="reference internal" href="#what-is-code-reuse" id="id5">What is Code Reuse?</a><ul>
<li><a class="reference internal" href="#example-1" id="id6">Example 1</a></li>
<li><a class="reference internal" href="#current-solutions" id="id7">Current Solutions</a></li>
</ul>
</li>
<li><a class="reference internal" href="#current-solution-limitations" id="id8">Current Solution Limitations</a><ul>
<li><a class="reference internal" href="#example-2" id="id9">Example 2</a></li>
<li><a class="reference internal" href="#what-s-needed" id="id10">What's Needed</a></li>
</ul>
</li>
<li><a class="reference internal" href="#applying-backward-chaining-to-code-reuse" id="id11">Applying Backward-Chaining to Code Reuse</a></li>
</ul>
</li>
<li><a class="reference internal" href="#pyke" id="id12">Pyke</a><ul>
<li><a class="reference internal" href="#pyke-krb-syntax" id="id13">Pyke KRB Syntax</a></li>
<li><a class="reference internal" href="#attaching-python-functions-to-backward-chaining-rules" id="id14">Attaching Python Functions to Backward-Chaining Rules</a><ul>
<li><a class="reference internal" href="#calling-subordinate-plans" id="id15">Calling Subordinate Plans</a></li>
<li><a class="reference internal" href="#some-final-points-about-plans" id="id16">Some Final Points about Plans</a></li>
</ul>
</li>
<li><a class="reference internal" href="#other-capabilities" id="id17">Other Capabilities</a></li>
</ul>
</li>
<li><a class="reference internal" href="#initial-results" id="id18">Initial Results</a><ul>
<li><a class="reference internal" href="#code-reuse-through-automatic-programming" id="id19">Code Reuse through Automatic Programming</a></li>
</ul>
</li>
<li><a class="reference internal" href="#going-forward" id="id20">Going Forward</a></li>
</ul>
</div>
</div>
<div class="section" id="the-thinking-that-led-to-pyke">
<h1><a class="toc-backref" href="#id3">The Thinking that Led to Pyke</a></h1>
<div class="section" id="the-need-for-code-reuse">
<h2><a class="toc-backref" href="#id4">The Need for Code Reuse</a></h2>
<p>At one of my contracting jobs, they had many clients running essentially the
same program, but each client needed minor code modifications. Their objective
was to maximize code reuse.</p>
</div>
<div class="section" id="what-is-code-reuse">
<h2><a class="toc-backref" href="#id5">What is Code Reuse?</a></h2>
<p>The first question is what does "code reuse" mean? And the answer that seems
most logical is <em>function</em> reuse. Where code modifications are required, a
new function can be created incorporating those modifications.</p>
<p>Then the remaining task is to bring the proper collection of functions
together for each client.</p>
<p>This gets more complicated as several versions of many functions will be
produced for various clients that are all available for reuse by the next
client. So it's not simply the case that there will be one standard default
version of each function, and then several one-off customized versions that
each only apply to a single client.</p>
<p>The result of this function combination exercise is a function call graph.</p>
<div class="section" id="example-1">
<h3><a class="toc-backref" href="#id6">Example 1</a></h3>
<p>Let us imagine that we start out with two functions for client1:</p>
<blockquote>
<img alt="images/PyCon2008/client1.png" src="images/PyCon2008/client1.png" style="width: 200.4px; height: 251.4px;" />
</blockquote>
<p>And then client2 comes along.</p>
<p>Let us first suppose that we need a new version of function A, but can reuse
function B<sub>1</sub>:</p>
<blockquote>
<img alt="images/PyCon2008/client2b.png" src="images/PyCon2008/client2b.png" style="width: 232.2px; height: 251.4px;" />
</blockquote>
<p>This is easy in any programming language and leads naturally to the idea that
the functions to reuse are the lower-level ones, which can be placed into
libraries.</p>
<p>But now let us suppose the opposite; that we need a new version of function B,
but can reuse function A<sub>1</sub>:</p>
<blockquote>
<img alt="images/PyCon2008/client2d.png" src="images/PyCon2008/client2d.png" style="width: 232.2px; height: 250.2px;" />
</blockquote>
<p>This is where we need help.</p>
</div>
<div class="section" id="current-solutions">
<h3><a class="toc-backref" href="#id7">Current Solutions</a></h3>
<p>The current solutions are all run-time solutions that trap the call from
function A<sub>1</sub> to some function B and figure out which function B to use
when the call is made. For example:</p>
<ul class="simple">
<li>O-O Dynamic Binding</li>
<li>Zope Adapters</li>
<li>Generic Functions</li>
</ul>
</div>
</div>
<div class="section" id="current-solution-limitations">
<h2><a class="toc-backref" href="#id8">Current Solution Limitations</a></h2>
<p>These solutions are all limited for the same reason. Let's look at another
example to see why.</p>
<div class="section" id="example-2">
<h3><a class="toc-backref" href="#id9">Example 2</a></h3>
<p>Real world programs have many more than two functions, but we can start to see
the limitations of the current solutions by looking at a three function
example.</p>
<p>We start with one client and three functions.</p>
<p>When client2 was added, it could only share function A<sub>1</sub> and had to
have a new B (B<sub>2</sub>) that needs a new function with a different call
interface than C, so we'll call it D<sub>1</sub>.</p>
<p>Then along comes client3. This time things are looking up, because all we
need is a new version of function D:</p>
<blockquote>
<img alt="images/PyCon2008/client3d.png" src="images/PyCon2008/client3d.png" style="width: 363.6px; height: 369.0px;" />
</blockquote>
<p>Now let's see what happens when we want to call the program for client3. We
know we need to start with function A<sub>1</sub>, since there is only version of
function A:</p>
<blockquote>
<img alt="images/PyCon2008/client3e.png" src="images/PyCon2008/client3e.png" style="width: 363.6px; height: 368.4px;" />
</blockquote>
<p>But at this point we have two choices for function B. All we know for client3
is that we're supposed to use function D<sub>2</sub>, so we're left to guess about
function B. So we try the first one, function B<sub>1</sub>:</p>
<blockquote>
<img alt="images/PyCon2008/client3f2.png" src="images/PyCon2008/client3f2.png" style="width: 363.6px; height: 368.4px;" />
</blockquote>
<p>It's not until function B<sub>1</sub> tries to call some function C that we
discover a problem.</p>
<p>This is where the current solutions break down.</p>
<p>Certainly for this example, it is easy to imagine a developer telling the
binding system: oh yea and client3 is going to have to use function B<sub>2</sub>
as well. But more realistic call graphs are much more complicated than this;
so the developer would have to specify which functions to use going back many
levels.</p>
<p>And then when there is a change in these upper level shared functions later on,
it will affect the call graphs for many clients.</p>
<p>So the current solutions don't scale well.</p>
<p>Continuing on with our example; what we need to do at this point is back up
and try the other B function:</p>
<blockquote>
<img alt="images/PyCon2008/client3g.png" src="images/PyCon2008/client3g.png" style="width: 363.6px; height: 368.4px;" />
</blockquote>
<p>After doing this, we discover the solution for the final call graph:</p>
<blockquote>
<img alt="images/PyCon2008/client3h.png" src="images/PyCon2008/client3h.png" style="width: 363.6px; height: 368.4px;" />
</blockquote>
</div>
<div class="section" id="what-s-needed">
<h3><a class="toc-backref" href="#id10">What's Needed</a></h3>
<p>By looking at this example, we discover two things about how to solve
this problem:</p>
<ol class="arabic">
<li><p class="first">Do function selection <strong>prior</strong> to calling any of the functions.</p>
<p>We can't wait until one function calls another to figure out what to do,
because we may change our minds!</p>
</li>
<li><p class="first">Use a standard backward-chaining rule-based algorithm.</p>
<p>The process of first trying function B<sub>1</sub>, then backing up and trying
function B<sub>2</sub> is exactly the process used in backward-chaining
rule-based systems like prolog. They call it <em>backtracking</em>.</p>
</li>
</ol>
</div>
</div>
<div class="section" id="applying-backward-chaining-to-code-reuse">
<h2><a class="toc-backref" href="#id11">Applying Backward-Chaining to Code Reuse</a></h2>
<p>The next question is how do we use a backward-chaining system to produce
function call graphs?</p>
<p>Let's examine, conceptually, what a set of backward-chaining rules would look
like to find a solution to this problem. Then we can determine how to turn
this into a function call graph.</p>
<p>The following diagram shows <em>goals</em> as dotted line boxes around the <em>rules</em>
that prove that goal. In this example, some goals only have one rule and some
have two.</p>
<p>We also see how <em>rules</em> link to other <em>goals</em>. For example, rule <tt class="docutils literal">Use B1</tt> and
rule <tt class="docutils literal">Use B2</tt> both prove the same goal: <tt class="docutils literal">Find B</tt>. But <tt class="docutils literal">Use B1</tt> links to
the <tt class="docutils literal">Find C</tt> goal, while <tt class="docutils literal">Use B2</tt> links to <tt class="docutils literal">Find D</tt>.</p>
<blockquote>
<img alt="images/PyCon2008/bc_rules2.png" src="images/PyCon2008/bc_rules2.png" style="width: 381.0px; height: 278.4px;" />
</blockquote>
<p>Now we can follow how these rules would be run by the knowledge engine:</p>
<ul class="simple">
<li>The whole process is kicked off by asking the knowledge engine for a
solution to <tt class="docutils literal">Find A</tt>.</li>
<li>There is only one rule for <tt class="docutils literal">Find A</tt>: <tt class="docutils literal">Use A1</tt>, so the knowledge engine
tries this rule.</li>
<li><tt class="docutils literal">Use A1</tt> needs a solution to <tt class="docutils literal">Find B</tt>.</li>
<li>The knowledge engine tries the first rule for <tt class="docutils literal">Find B</tt>: <tt class="docutils literal">Use B1</tt>.</li>
<li><tt class="docutils literal">Use B1</tt> needs a solution to <tt class="docutils literal">Find C</tt>.</li>
<li>The knowledge engine tries the only rule for <tt class="docutils literal">Find C</tt>:
<tt class="docutils literal">Use C1</tt>, which fails for client3!</li>
</ul>
<p>The situation now looks like:</p>
<blockquote>
<img alt="images/PyCon2008/bc_rules5.png" src="images/PyCon2008/bc_rules5.png" style="width: 381.0px; height: 278.4px;" />
</blockquote>
<p>Continuing on:</p>
<ul class="simple">
<li>Since there are no other rules for <tt class="docutils literal">Find C</tt>, the <tt class="docutils literal">Find C</tt> goal fails.</li>
<li>Which means that the <tt class="docutils literal">Use B1</tt> rule fails.</li>
<li>So the knowledge engine tries the next rule for <tt class="docutils literal">Find B</tt>: <tt class="docutils literal">Use B2</tt>.</li>
<li><tt class="docutils literal">Use B2</tt> needs a solution for <tt class="docutils literal">Find D</tt>.</li>
<li>The knowledge engine tries the first rule for <tt class="docutils literal">Find D</tt>: <tt class="docutils literal">Use D1</tt>,
which fails for client3.</li>
<li>The knowledge engine tries the next rule for <tt class="docutils literal">Find D</tt>: <tt class="docutils literal">Use D2</tt>,
which succeeds for client3!</li>
<li>The <tt class="docutils literal">Find D</tt> goal succeeds.</li>
<li>The <tt class="docutils literal">Find B</tt> goal succeeds.</li>
<li>And the <tt class="docutils literal">Find A</tt> goal succeeds.</li>
</ul>
<p>When we achieve final success, we have the following situation:</p>
<blockquote>
<img alt="images/PyCon2008/bc_rules8.png" src="images/PyCon2008/bc_rules8.png" style="width: 381.0px; height: 278.4px;" />
</blockquote>
<p>What remains is to translate this into a function call graph.</p>
<p>It becomes obvious that we want to attach our python functions directly to the
backward-chaining rules:</p>
<blockquote>
<img alt="images/PyCon2008/bc_rules9.png" src="images/PyCon2008/bc_rules9.png" style="width: 426.0px; height: 304.2px;" />
</blockquote>
</div>
</div>
<div class="section" id="pyke">
<h1><a class="toc-backref" href="#id12">Pyke</a></h1>
<div class="section" id="pyke-krb-syntax">
<h2><a class="toc-backref" href="#id13">Pyke KRB Syntax</a></h2>
<p>How does all of this look in Pyke?</p>
<p>Pyke has its own language for rules, which it compiles into python source
modules and then imports. This gives a performance boost by circumventing
nearly all of the inference engine interpretation logic. It also makes it
very easy to embed short python code snippets directly within the rules to
help out with the inferencing. This keeps the inference mechanism simpler as
it does not have to deal with things that are already easy in a procedural
language (like arithmetic and simple list manipulation).</p>
<p>The Pyke rule source files are called <em>knowledge rule bases</em> and have a
<tt class="docutils literal">.krb</tt> suffix.</p>
<p>We'll continue with the previous example here.</p>
<p>First, let's look at the rules before we attach the python functions.
Here's three of the rules:</p>
<pre class="literal-block">
use_B2
use find_B($client)
when
check_function($client, B, 2)
find_D($client)
use_D1
use find_D($client)
when
check_function($client, D, 1)
use_D2
use find_D($client)
when
check_function($client, D, 2)
</pre>
<p>Note that Pyke uses a <tt class="docutils literal">$</tt> to indicate pattern variables (anonymous pattern
variables start with <tt class="docutils literal">$_</tt>).</p>
<p>The <tt class="docutils literal">check_function</tt> goal checks to see what version of the indicated
function should be used for this client. If this is the incorrect version,
it fails. If there is no indication for this function, it succeeds to
allow guessing.</p>
</div>
<div class="section" id="attaching-python-functions-to-backward-chaining-rules">
<h2><a class="toc-backref" href="#id14">Attaching Python Functions to Backward-Chaining Rules</a></h2>
<p>Here are the last two rules with the python code added. The rules have the
python function attached to them so that the function can be returned from
the goal as an additional parameter. Because this parameter does not affect
the inferencing process, it is a hidden parameter.</p>
<p>These examples just show one line of python code, but you may have as many
lines as you want:</p>
<pre class="literal-block">
use_D1
use find_D($client)
when
check_function($client, D, 1)
with
print "D1"
use_D2
use find_D($client)
when
check_function($client, D, 2)
with
print "D2"
</pre>
<p>Pyke calls the function call graphs <em>plans</em>. This terms applies to both the
final top-level call graph, as well as intermediate call graphs.</p>
<div class="section" id="calling-subordinate-plans">
<h3><a class="toc-backref" href="#id15">Calling Subordinate Plans</a></h3>
<p>Now we do the same thing to add python code to the <tt class="docutils literal">use_B2</tt> rule:</p>
<pre class="literal-block">
use_B2
use find_B($client)
when
check_function($client, B, 2)
find_D($client)
with
print "B2"
</pre>
<p>We have code for the B<sub>2</sub> function, but how does it call the plan
returned from the <tt class="docutils literal">find_D</tt> goal?</p>
<p>The most common way is:</p>
<pre class="literal-block">
use_B2
use find_B($client)
when
check_function($client, B, 2)
find_D($client)
$$()
with
print "B2"
</pre>
<p>In general, there may be many goals in the <tt class="docutils literal">when</tt> clause that produce plans.
Each would have an indented line of python code under it with <tt class="docutils literal">$$</tt>
indicating the subordinate function. These indented lines are combined with
the lines in the <tt class="docutils literal">with</tt> clause to form the complete python function for this
rule (with the differences in indenting levels corrected).</p>
<p>But in this case, this would mean that <tt class="docutils literal">print "Dx"</tt> would be executed before
<tt class="docutils literal">print "B2"</tt>, which seems backwards.</p>
<p>To call the subordinate plan within the <tt class="docutils literal">with</tt> clause, there is an alternate
mechanism:</p>
<pre class="literal-block">
use_B2
use find_B($client)
when
check_function($client, B, 2)
find_D($client) as $d
with
print "B2"
$d()
</pre>
<p>The <tt class="docutils literal">as $d</tt> clause stores the plan function in pattern variable <tt class="docutils literal">$d</tt> rather
than adding a call to it to the <tt class="docutils literal">with</tt> clause. Then you can decide in the
<tt class="docutils literal">with</tt> clause whether to call it, when to call it, how many times to call it,
etc.</p>
<p>Note that pattern variables in general can be used within the python code.
These are replaced by their final bound values (as constants) after the
top-level goal has been proven. Thus, the rules can also be used to determine
and set constant values within the plan functions to further customize the
code. This is the reason that the code for the attached python functions is
placed directly in the .krb file rather than in a separate python module.</p>
</div>
<div class="section" id="some-final-points-about-plans">
<h3><a class="toc-backref" href="#id16">Some Final Points about Plans</a></h3>
<ul>
<li><p class="first">Function parameters are specified at the end of the <tt class="docutils literal">use</tt> clause with an
optional <tt class="docutils literal">taking</tt> clause:</p>
<pre class="literal-block">
use_B2
use find_B($client) taking (a, b = None)
...
</pre>
</li>
<li><p class="first">A completed plan appears as a normal python function.</p>
</li>
<li><p class="first">Plans may be pickled and reused.</p>
<ul class="simple">
<li>If you add functools.partial to copy_reg.</li>
</ul>
</li>
<li><p class="first">You don't need to import all of Pyke to unpickle and run a plan.</p>
<ul class="simple">
<li>Only one small Pyke module is needed.</li>
</ul>
</li>
</ul>
</div>
</div>
<div class="section" id="other-capabilities">
<h2><a class="toc-backref" href="#id17">Other Capabilities</a></h2>
<ul>
<li><p class="first">Pyke also supports forward-chaining rules:</p>
<pre class="literal-block">
fc_rule_name
foreach
fact_base_name.fact_name(pattern...)
...
assert
fact_base_name.fact_name(pattern...)
...
</pre>
<ul class="simple">
<li>Pyke runs all of the forward-chaining rules whose <tt class="docutils literal">foreach</tt> clause
succeeds prior to running any backward-chaining rules. Thus,
forward-chaining rules can not call backward-chaining rules and vice versa.
But backward-chaining rules <em>can</em> examine facts asserted by
forward-chaining rules.</li>
</ul>
</li>
<li><p class="first">There are different kinds of knowledge bases:</p>
<ul class="simple">
<li>Fact Bases:<ul>
<li>simply store facts.</li>
</ul>
</li>
<li>Rule Bases:<ul>
<li>store both forward-chaining and backward-chaining rules.</li>
<li>can use rule base inheritance to inherit, and build upon, the rules from
another rule base.<ul>
<li>But only single inheritance.</li>
<li>Thus each rule base has a unique root rule base.</li>
<li>All rule bases that share the same root form a <em>rule base category</em>.</li>
</ul>
</li>
<li>allow selection of which rule base(s) to use through rule base
<em>activation</em>.<ul>
<li>But only one rule base per rule base category may be active at one time.</li>
</ul>
</li>
</ul>
</li>
<li>Extensibility. You can write your own knowledge bases. These might:<ul>
<li>look up facts in a database</li>
<li>ask users questions</li>
<li>probe hardware/software settings</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
<div class="section" id="initial-results">
<h1><a class="toc-backref" href="#id18">Initial Results</a></h1>
<p>After writing Pyke's younger brother, it occurred to me that backward-chaining
could be used to automatically figure out how to join database tables together
and generate SQL statements.</p>
<p>And if the backward-chaining rules could see which substitution variables are
needed by an HTML templating system, it could automatically generate the SQL
to get these data and build the code to update the template.</p>
<p>It seemed that it would no longer be necessary to include anything that
looks like code in the HTML templates. The graphic designers could just add
simple attributes to their tags and the backward-chaining system would figure
out the rest. This would mean that the programmers don't need to modify the
HTML templates, and the graphic designers could maintain full ownership of
the HTML.</p>
<p>I had a WSGI front-end that would simply assert the data passed to it as facts.</p>
<p>The forward-chaining rules took these starting facts, parsed the cookie
information, form information, browser information, and url, determined whether
the user was logged in, figured out which client the request was for,
established all of this as additional facts and activated the appropriate rule
base for this client.</p>
<p>Then the WSGI front-end simply asked for a proof of the <tt class="docutils literal">process()</tt> goal and
executed the resulting plan function which returned the final HTTP status codes
and HTML document.</p>
<p>For a page retrieval (vs. form action), the <tt class="docutils literal">process</tt> goal used two sub-goals:</p>
<ol class="arabic simple">
<li>A <tt class="docutils literal">format_retrieval</tt> goal that read the HTML template, and built a plan
to render the template, given the needed data. This goal also returned a
simple descriptor of this needed data as part of its inferencing.</li>
<li>A <tt class="docutils literal">retrieve</tt> goal then took that descriptor of the needed data, built
the necessary SQL statements, and cooked them into a plan to execute those
statements and return the needed data as a simple dictionary.</li>
</ol>
<p>Then the two sub plans were combined in the reverse order, to first retrieve
the data and then populate the template, for the final plan that went back to
the WSGI front-end.</p>
<p>The Pyke examples/sqlgen and examples/web_framework are simplified examples
that you can look at.</p>
<p>Now, as it turned out, the company had been running without a president for
quite awhile, and had finally hired a new president.</p>
<p>So just as I finished the SQL generation logic to handle unique data (vs.
multi-row data) and was preparing to show some demonstrations; our new
president, coming from a java background and apparently never having heard of
python, decided to cancel the project.</p>
<p>End of contract!</p>
<div class="section" id="code-reuse-through-automatic-programming">
<h2><a class="toc-backref" href="#id19">Code Reuse through Automatic Programming</a></h2>
<p>The fundamental lesson learned was that this technique ends up being far more
capable than what I had first imagined.</p>
<p>More than producing adaptable libraries capable of using B<sub>1</sub> or
B<sub>2</sub> at some point in their call graphs, this approach leads to
something more akin to the back-end of a compiler -- except that the compiler
front-end does not target a textual language that needs to be written and
parsed; but is rather a simple observer of already known facts:</p>
<blockquote>
<p>Show me your schema, and I'll build your SQL statements.</p>
<p>Show me your HTML templates, and I'll build the code to populate them for you.</p>
</blockquote>
<p>This seems to change the whole concept of <em>code reuse</em>; elevating it from the
realm of static <em>libraries</em>, to the realm of dynamic <em>automatic programming</em>.</p>
</div>
</div>
<div class="section" id="going-forward">
<h1><a class="toc-backref" href="#id20">Going Forward</a></h1>
<p>Thinking that others might find this useful, I've re-implemented the underlying
knowledge engine from scratch, with numerous improvements gained from the
experience of the first attempt, and made it open source.</p>
<p>With the backward-chaining rule base system, many applications are possible:</p>
<ul class="simple">
<li>Complicated decision making applications.</li>
<li>Compiler back-ends.<ul>
<li>The .krb compiler uses Pyke.</li>
</ul>
</li>
<li>Automatic SQL statement generation.</li>
<li>Automatic HTML generation/template processing.</li>
<li>The control module for a web framework tool.</li>
<li>Incorporate new custom functions into a large set
of standard functions, which may change the
selection or configuration of standard functions
in other parts of the program.</li>
<li>Automatically re-distribute the modules of a system
over different programs and computers to meet a
wide range of performance and capacity goals.</li>
<li>Diagnosis systems.<ul>
<li>E.g., Automated customer service systems.</li>
</ul>
</li>
<li>Program or library customization for specific uses.</li>
<li>Instantiate, configure, and interconnect networks of objects to meet a
specific need or situation.</li>
</ul>
<p>Up to this point, I've been flying solo. For this project to move forward
to fully explore its capabilities, I'm going to need help!</p>
<p>I'd like to see several early adopters run with this and try it out in different
domains. Pyke is in alpha status now and is ready to start to lean on.</p>
<br />
<a rel="license" href="http://creativecommons.org/licenses/by/3.0/">
<img alt="Creative Commons License" style="border-width:0"
src="http://i.creativecommons.org/l/by/3.0/88x31.png" />
</a><p>This paper is licensed under a <a class="reference external" href="http://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution 3.0 Unported
License</a>.</p>
</div>
</div>
<!-- <div id="return-to-top">
<a href="#">Return to Top</a>
</div>
-->
</div>
</td>
<td id="right-nav">
<div id="right-nav-div">
<h3>More:</h3>
<div class="right-item"><a href="about_pyke/index.html">About Pyke</a><p>What pyke does for you, its features, steps to using pyke and
installation.</p>
</div>
<div class="right-item"><a href="logic_programming/index.html">Logic Programming Tutorial</a><p>A tutorial on logic programming in Pyke, including <em>statements</em>,
<em>pattern matching</em> and <em>rules</em>.</p>
</div>
<div class="right-item"><a href="knowledge_bases/index.html">Knowledge Bases</a><p>Knowledge is made up of both <em>facts</em> and <em>rules</em>. These are gathered
into named repositories called <em>knowledge bases</em>.</p>
</div>
<div class="right-item"><a href="pyke_syntax/index.html">Pyke Syntax</a><p>The syntax of Pyke's three different kinds of source files.</p>
</div>
<div class="right-item"><a href="using_pyke/index.html">Using Pyke</a><p>How your Python program calls Pyke.</p>
</div>
<div class="right-item"><a href="examples.html">Examples</a><p>An overview of the examples provided with Pyke.</p>
</div>
<div class="right-item"><a href="PyCon2008-paper.html">Applying Expert System Technology to Code Reuse with Pyke</a><p>Paper presented at the PyCon 2008 conference in Chicago.</p>
</div>
</div>
</td>
</tr>
</tbody>
<tfoot id="foot">
<tr id="foot2">
<td id="copyright" colspan="3">
Copyright © 2007-2009 Bruce Frederiksen
</td>
</tr>
</tfoot>
</table>
<div id="last-modified">
Page last modified
Thu, May 14 2009.
</div>
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ?
"https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost +
"google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-6310805-1");
pageTracker._trackPageview();
} catch(err) {}
</script>
</body>
</html>
|