File: test_jdftxinfile.py

package info (click to toggle)
pymatgen 2025.10.7%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 83,468 kB
  • sloc: python: 175,932; javascript: 780; makefile: 221; sh: 59
file content (559 lines) | stat: -rw-r--r-- 21,288 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
from __future__ import annotations

import re
from copy import deepcopy
from typing import TYPE_CHECKING, Any

import numpy as np
import pytest

from pymatgen.core.structure import Structure
from pymatgen.io.jdftx.inputs import JDFTXInfile, JDFTXStructure
from pymatgen.io.jdftx.jdftxinfile_default_inputs import default_inputs
from pymatgen.io.jdftx.jdftxinfile_master_format import get_tag_object

from .inputs_test_utils import (
    assert_equiv_jdftxstructure,
    assert_idential_jif,
    ex_in_files_dir,
    ex_infile1_fname,
    ex_infile1_knowns,
    ex_infile2_fname,
    ex_infile3_fname,
)
from .shared_test_utils import assert_same_value

if TYPE_CHECKING:
    from collections.abc import Callable

    from pymatgen.io.jdftx.generic_tags import MultiformatTag, TagContainer
    from pymatgen.util.typing import PathLike


def test_jdftxinfile_structuregen():
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    jdftxstruct = jif.to_jdftxstructure(jif)
    assert isinstance(jdftxstruct, JDFTXStructure)


@pytest.mark.parametrize(
    ("infile_fname", "bool_func"),
    [
        (ex_infile1_fname, lambda jif: all(jif["kpoint-folding"][x] == 1 for x in jif["kpoint-folding"])),
        (ex_infile1_fname, lambda jif: jif["elec-n-bands"] == 15),
    ],
)
def test_JDFTXInfile_known_lambda(infile_fname: str, bool_func: Callable[[JDFTXInfile], bool]):
    jif = JDFTXInfile.from_file(infile_fname)
    assert bool_func(jif)


def JDFTXInfile_self_consistency_tester(jif: JDFTXInfile, tmp_path: PathLike):
    """Create an assortment of JDFTXinfile created from the same data but through different methods, and test that
    they are all equivalent through "assert_idential_jif" """
    dict_jif = jif.as_dict()
    # # Commenting out tests with jif2 due to the list representation asserted
    jif2 = JDFTXInfile.get_dict_representation(JDFTXInfile._from_dict(dict_jif))
    str_list_jif = jif.get_text_list()
    str_jif = "\n".join(str_list_jif)
    jif3 = JDFTXInfile.from_str(str_jif)
    tmp_fname = tmp_path / "tmp.in"
    jif.write_file(tmp_fname)
    jif4 = JDFTXInfile.from_file(tmp_fname)
    jifs = [jif, jif2, jif3, jif4]
    for i in range(len(jifs)):
        for j in range(i + 1, len(jifs)):
            assert_idential_jif(jifs[i], jifs[j])


def test_JDFTXInfile_from_dict(tmp_path) -> None:
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    jif_dict = jif.as_dict()
    # Test that dictionary can be modified and that _from_dict will fix set values
    jif_dict["elec-cutoff"] = 20
    jif2 = JDFTXInfile.from_dict(jif_dict)
    JDFTXInfile_self_consistency_tester(jif2, tmp_path)


@pytest.mark.parametrize("infile_fname", [ex_infile3_fname, ex_infile1_fname, ex_infile2_fname])
def test_JDFTXInfile_self_consistency_fromfile(infile_fname: PathLike, tmp_path) -> None:
    """Test that JDFTXInfile objects with different assortments of tags survive inter-conversion done within
    "JDFTXInfile_self_consistency_tester"""
    jif = JDFTXInfile.from_file(infile_fname)
    JDFTXInfile_self_consistency_tester(jif, tmp_path)


@pytest.mark.parametrize(
    ("val_key", "val"),
    [
        ("lattice", np.eye(3)),
        ("fluid-solvent", "H2O 0.5"),
        ("fluid-solvent", "H2O"),
        ("latt-scale", "1 1 1"),
        ("latt-scale", ["1", "1", "1"]),
        ("latt-scale", [1, 1, 1]),
        ("latt-scale", {"s0": 1, "s1": 1, "s2": 1}),
        ("elec-cutoff", {"Ecut": 20.0, "EcutRho": 100.0}),
        ("elec-cutoff", "20 100"),
        ("elec-cutoff", [20, 100]),
        ("elec-cutoff", 20),
    ],
)
def test_JDFTXInfile_set_values(val_key: str, val: Any, tmp_path) -> None:
    """Test value setting for various tags"""
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    jif[val_key] = val
    # Test that the JDFTXInfile object is still consistent
    JDFTXInfile_self_consistency_tester(jif, tmp_path)


@pytest.mark.parametrize(
    ("val_key", "val"),
    [
        ("fluid-solvent", "H2O"),
        ("dump", "End DOS"),
        ("dump", "End DOS BandEigs"),
        ("dump-interval", "Electronic 1"),
        ("ion", "Fe 1 1 1 0"),
    ],
)
def test_JDFTXInfile_append_values(val_key: str, val: Any, tmp_path) -> None:
    """Test the append_tag method"""
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    val_old = None if val_key not in jif else deepcopy(jif[val_key])
    jif.append_tag(val_key, val)
    val_new = jif[val_key]
    assert val_old != val_new
    # Test that the append_tag does not break the JDFTXInfile object
    JDFTXInfile_self_consistency_tester(jif, tmp_path)


def test_JDFTXInfile_expected_exceptions():
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    with pytest.raises(KeyError):
        jif["barbie"] = "ken"
    # non-repeating tags raise value-errors when appended
    tag = "initial-state"
    with pytest.raises(ValueError, match=re.escape(f"The tag '{tag}' cannot be repeated and thus cannot be appended")):
        jif.append_tag(tag, "$VAR")
    # Phonon and Wannier tags raise value-errors at _preprocess_line
    with pytest.raises(ValueError, match="Phonon functionality has not been added!"):
        jif._preprocess_line("phonon idk")
    with pytest.raises(ValueError, match="Wannier functionality has not been added!"):
        jif._preprocess_line("wannier idk")
    # Tags not in MASTER_TAG_LIST raise value-errors at _preprocess_line
    err_str = f"The barbie tag in {['barbie', 'ken allan']} is not in MASTER_TAG_LIST and is not a comment, "
    "something is wrong with this input data!"
    with pytest.raises(ValueError, match=re.escape(err_str)):
        jif._preprocess_line("barbie ken allan")
    # include tags raise value-errors if the file cannot be found
    _filename = "barbie"
    err_str = f"The include file {_filename} ({_filename}) does not exist!"
    with pytest.raises(ValueError, match=re.escape(err_str)):
        JDFTXInfile.from_str(f"include {_filename}\n")
    # If it does exist, no error should be raised
    filename = ex_in_files_dir / "barbie"
    err_str = f"The include file {_filename} ({filename}) does not exist!"
    str(err_str)
    # If the wrong parent_path is given for a file that does exist, error
    with pytest.raises(ValueError, match=re.escape(err_str)):
        JDFTXInfile.from_str(f"include {_filename}\n", path_parent=ex_in_files_dir)
    # JDFTXInfile cannot be constructed without lattice and ion tags
    with pytest.raises(ValueError, match="This input file is missing required structure tags"):
        JDFTXInfile.from_str("dump End DOS\n")
    # "barbie" here is supposed to be "list-to-dict" or "dict-to-list"
    with pytest.raises(ValueError, match="Conversion type barbie is not 'list-to-dict' or 'dict-to-list'"):
        jif._needs_conversion("barbie", ["ken"])
    # Setting tags with unfixable values immediately raises an error
    tag = "exchange-params"
    value = {"blockSize": 1, "nOuterVxx": "barbie"}
    err_str = str(f"The {tag} tag with value:\n{value}\ncould not be fixed!")
    with pytest.raises(ValueError, match=re.escape(err_str)):
        # Implicitly tests validate_tags
        jif[tag] = value
    # Setting tags with unfixable values through "update" side-steps the error, but will raise it once
    # "validate_tags" is inevitably called
    jif2 = jif.copy()
    jif2.update({tag: value})
    with pytest.raises(ValueError, match=re.escape(err_str)):
        jif2.validate_tags(try_auto_type_fix=True)
    # The inevitable error can be reduced to a warning if you tell it not to try to fix the values
    with pytest.warns(UserWarning, match="The exchange-params tag with value"):
        jif2.validate_tags(try_auto_type_fix=False)
    # Setting a non-string tag raises an error within the JDFTXInfile object
    err_str = str(f"{1.2} is not a string!")
    with pytest.raises(TypeError, match=err_str):
        jif[1.2] = 3.4


def test_JDFTXInfile_strip_structure():
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    structural_tags = ["lattice", "ion", "coords-type"]
    assert all(tag in jif for tag in structural_tags)
    jif.strip_structure_tags()
    assert all(tag not in jif for tag in structural_tags)


def test_JDFTXInfile_niche_cases():
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    tag_object, tag, value = jif._preprocess_line("dump-only")
    assert value == ("")
    tag = "elec-ex-corr"
    tag_object = get_tag_object(tag)
    value = "gga"
    params = jif.as_dict()
    err_str = f"The '{tag}' tag appears multiple times in this input when it should not!"
    with pytest.raises(ValueError, match=err_str):
        jif._store_value(params, tag_object, tag, value)
    struct = jif.to_pmg_structure(jif)
    assert isinstance(struct, Structure)
    noneout = jif.validate_tags(return_list_rep=True)
    assert noneout is None
    jif["fluid-solvent"] = {"name": "H2O", "concentration": 0.5}
    assert len(jif["fluid-solvent"]) == 1
    jif.append_tag("fluid-solvent", {"name": "H2O", "concentration": 0.5})
    assert len(jif["fluid-solvent"]) == 2


def test_JDFTXInfile_add_method():
    """Test the __add__ method"""
    # No new values are being assigned in jif2, so jif + jif2 should be the same as jif
    # Since the convenience of this method would be lost if the user has to pay special attention to duplicating
    # repeatable values, repeatable tags are not append to each other
    jif = JDFTXInfile.from_file(ex_infile1_fname)
    jif2 = jif.copy()
    assert jif2 is not jif  # Testing robustness of copy method while we are at it
    jif3 = jif + jif2
    assert_idential_jif(jif, jif3)
    # If a tag is repeated, the values must be the same since choice of value is ambiguous
    key = "elec-ex-corr"
    val_old = deepcopy(jif[key])
    val_new = "lda"
    assert val_old != val_new
    jif2[key] = val_new
    jif4 = jif + jif2
    assert_same_value(jif4[key], val_new)  # Make sure addition chooses second value for non-repeatable tags
    del jif4
    jif2.append_tag("dump", "Fluid State")
    jif.append_tag("dump", "Fluid Berry")
    jif4 = jif + jif2
    assert len(jif4["dump"]) == len(jif2["dump"]) + 1
    assert {"Fluid": {"State": True}} in jif4["dump"]
    assert {"Fluid": {"State": True}} not in jif["dump"]
    assert {"Fluid": {"Berry": True}} in jif4["dump"]
    assert {"Fluid": {"Berry": True}} not in jif2["dump"]
    # Normal expected behavior
    key_add = "target-mu"
    val_add = 0.5
    assert key_add not in jif
    jif2 = jif.copy()
    jif2[key_add] = val_add
    jif3 = jif + jif2
    assert jif3[key_add]["mu"] == pytest.approx(val_add)


@pytest.mark.parametrize(("infile_fname", "knowns"), [(ex_infile1_fname, ex_infile1_knowns)])
def test_JDFTXInfile_knowns_simple(infile_fname: PathLike, knowns: dict):
    """Test that known values that can be tested with assert_same_value are correct"""
    jif = JDFTXInfile.from_file(infile_fname)
    for key, val in knowns.items():
        assert_same_value(jif[key], val)


def test_jdftxstructure():
    """Test the JDFTXStructure object associated with the JDFTXInfile object"""
    jif = JDFTXInfile.from_file(ex_infile2_fname)
    struct = jif.to_jdftxstructure(jif)
    assert isinstance(struct, JDFTXStructure)
    struc_str = str(struct)
    assert isinstance(struc_str, str)
    newstruct = JDFTXStructure.from_str(struc_str)
    assert isinstance(newstruct, JDFTXStructure)
    # Double checking I got the column/row order right
    assert_same_value(struct.structure.lattice, newstruct.structure.lattice)
    assert struct.natoms == 16
    with open(ex_infile2_fname) as f:
        lines = list.copy(list(f))
    # Test different ways of creating a JDFTXStructure object create the same object if data is the same
    data = "\n".join(lines)
    struct2 = JDFTXStructure.from_str(data)
    assert_equiv_jdftxstructure(struct, struct2)
    struct3 = JDFTXStructure.from_dict(struct.as_dict())
    assert_equiv_jdftxstructure(struct, struct3)


def test_pmg_struc():
    jif = JDFTXInfile.from_file(ex_infile2_fname)
    struc1 = jif.to_pmg_structure(jif)
    struc2 = jif.structure
    for s in [struc1, struc2]:
        assert isinstance(s, Structure)
    assert_idential_jif(struc1.as_dict(), struc2.as_dict())


def test_jdftxtructure_naming():
    """Test the naming of the JDFTXStructure object.

    Test to make sure reading from a Structure with labels not exactly matching the element names
    (ie Si0, Si1, or Si+2) will still be read correctly.
    """
    struct = Structure.from_file(ex_in_files_dir / "Si.cif")
    jstruct = JDFTXStructure(structure=struct)
    JDFTXInfile.from_jdftxstructure(jstruct)
    JDFTXInfile.from_structure(struct)


@pytest.mark.parametrize(
    ("value_str", "expected_dict"),
    [
        (
            "H 1.0 1.0 1.0 0",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "moveScale": 0,
            },
        ),
        (
            "H 1.0 1.0 1.0 v 1.0 1.0 1.0 0",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "v": {
                    "vx0": 1.0,
                    "vx1": 1.0,
                    "vx2": 1.0,
                },
                "moveScale": 0,
            },
        ),
        (
            "H 1.0 1.0 1.0 1 Linear 1.0 1.0 1.0",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "moveScale": 1,
                "constraint type": "Linear",
                "d0": 1.0,
                "d1": 1.0,
                "d2": 1.0,
            },
        ),
        (
            "H 1.0 1.0 1.0 1 HyperPlane 1.0 1.0 1.0 g1 HyperPlane 1.0 1.0 1.0 g1",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "moveScale": 1,
                "HyperPlane": [
                    {
                        "d0": 1.0,
                        "d1": 1.0,
                        "d2": 1.0,
                        "group": "g1",
                    },
                    {
                        "d0": 1.0,
                        "d1": 1.0,
                        "d2": 1.0,
                        "group": "g1",
                    },
                ],
            },
        ),
    ],
)
def test_ion_reading(value_str: str, expected_dict: dict):
    ion_tag: MultiformatTag = get_tag_object("ion")
    i = ion_tag.get_format_index_for_str_value("ion", value_str)
    tag_object: TagContainer = ion_tag.format_options[i]
    parsed_tag = tag_object.read("ion", value_str)
    assert_same_value(parsed_tag, expected_dict)


@pytest.mark.parametrize(
    ("expected_out", "stored_dict"),
    [
        (
            "ion H 1.000000000000 1.000000000000 1.000000000000 0",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "moveScale": 0,
            },
        ),
        (
            "ion H 1.000000000000 1.000000000000 1.000000000000 v 1.000000000000 1.000000000000 1.000000000000 0",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "v": {
                    "vx0": 1.0,
                    "vx1": 1.0,
                    "vx2": 1.0,
                },
                "moveScale": 0,
            },
        ),
        (
            "ion H 1.000000000000 1.000000000000 1.000000000000 1 Linear 1.000000000000 1.000000000000 1.000000000000",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "moveScale": 1,
                "constraint type": "Linear",
                "d0": 1.0,
                "d1": 1.0,
                "d2": 1.0,
            },
        ),
        (
            "ion H 1.000000000000 1.000000000000 1.000000000000 1 HyperPlane 1.000000000000 1.000000000000 "
            "1.000000000000 g1 HyperPlane 1.000000000000 1.000000000000 1.000000000000 g1",
            {
                "species-id": "H",
                "x0": 1.0,
                "x1": 1.0,
                "x2": 1.0,
                "moveScale": 1,
                "HyperPlane": [
                    {
                        "d0": 1.0,
                        "d1": 1.0,
                        "d2": 1.0,
                        "group": "g1",
                    },
                    {
                        "d0": 1.0,
                        "d1": 1.0,
                        "d2": 1.0,
                        "group": "g1",
                    },
                ],
            },
        ),
    ],
)
def test_ion_writing(expected_out: str, stored_dict: dict):
    ion_tag: MultiformatTag = get_tag_object("ion")
    i, _ = ion_tag._determine_format_option("ion", stored_dict)
    tag_object: TagContainer = ion_tag.format_options[i]
    output = tag_object.write("ion", stored_dict)
    assert_same_value(output.strip().split(), expected_out.strip().split())


@pytest.mark.parametrize(
    ("lattice_type", "value_str"),
    [
        ("Rhombohedral", "Rhombohedral 1.0 1.0"),
        ("Triclinic", "Triclinic 1.0 1.0 1.0 1.0 1.0 1.0"),
        ("Hexagonal", "Hexagonal 1.0 1.0"),
        ("Cubic", "Body-Centered Cubic 1.0"),
        ("Cubic", "Cubic 1.0"),
    ],
)
def test_lattice_reading(lattice_type: str, value_str: str):
    mft_lattice_tag = get_tag_object("lattice")
    assert mft_lattice_tag is not None
    i = mft_lattice_tag.get_format_index_for_str_value("lattice", value_str)
    tag_object = mft_lattice_tag.format_options[i]
    parsed_tag = tag_object.read("lattice", value_str)
    assert lattice_type in parsed_tag


@pytest.mark.parametrize(
    ("value_str"),
    [
        ("Rhombohedral 1.0 1.0"),
        ("Triclinic 1.0 1.0 1.0 1.0 1.0 1.0"),
        ("Hexagonal 1.0 1.0"),
        ("Body-Centered Cubic 1.0"),
        ("Cubic 1.0"),
        ("Orthorhombic 1.0 1.0 1.0"),
        ("Base-Centered Orthorhombic 1.0 1.0 1.0"),
        ("Monoclinic 1.0 1.0 1.0 1.0"),
        ("Base-Centered Monoclinic 1.0 1.0 1.0 1.0"),
        ("Tetragonal 1.0 1.0"),
        ("Body-Centered Tetragonal 1.0 1.0"),
    ],
)
def test_lattice_writing(value_str: str):
    mft_lattice_tag = get_tag_object("lattice")
    assert mft_lattice_tag is not None
    i = mft_lattice_tag.get_format_index_for_str_value("lattice", value_str)
    tag_object = mft_lattice_tag.format_options[i]
    parsed_tag = tag_object.read("lattice", value_str)
    output = tag_object.write("lattice", parsed_tag)
    assert_same_value(
        ("lattice " + value_str).strip().split(),
        output.strip().split(),
    )


@pytest.mark.parametrize(
    ("value_str"),
    [
        ("Rhombohedral 1.0 1.0"),
        ("Triclinic 1.0 1.0 1.0 1.0 1.0 1.0"),
        ("Hexagonal 1.0 1.0"),
        ("Body-Centered Cubic 1.0"),
        ("Cubic 1.0"),
        ("Orthorhombic 1.0 1.0 1.0"),
        ("Base-Centered Orthorhombic 1.0 1.0 1.0"),
        ("Monoclinic 1.0 1.0 1.0 1.0"),
        ("Base-Centered Monoclinic 1.0 1.0 1.0 1.0"),
        ("Tetragonal 1.0 1.0"),
        ("Body-Centered Tetragonal 1.0 1.0"),
    ],
)
def test_jdftxstructure_lattice_conversion(value_str: str):
    test_vars = ["a", "b", "c", "alpha", "beta", "gamma"]
    mft_lattice_tag = get_tag_object("lattice")
    assert mft_lattice_tag is not None
    i = mft_lattice_tag.get_format_index_for_str_value("lattice", value_str)
    tag_object = mft_lattice_tag.format_options[i]
    parsed_tag = tag_object.read("lattice", value_str)
    infile = JDFTXInfile.from_str("lattice " + value_str + "\n ion H 0.0 0.0 0.0 0", dont_require_structure=True)
    if "modification" in parsed_tag:
        with pytest.raises(NotImplementedError):
            _ = infile.to_pmg_structure(infile)
    else:
        structure = infile.to_pmg_structure(infile)
        for var in test_vars:
            if var in parsed_tag:
                assert_same_value(float(getattr(structure.lattice, var)), float(parsed_tag[var]))


def test_jdftxinfile_comparison():
    jif1 = JDFTXInfile.from_file(ex_infile1_fname)
    jif2 = JDFTXInfile.from_file(ex_infile2_fname)
    assert len(jif1.get_differing_tags(jif2))  # At least one tag should be different
    jif1copy = jif1.copy()
    assert not len(jif1.get_differing_tags(jif1copy))  # No tags should be different
    default_test_tag = "davidson-band-ratio"
    default_test_val = default_inputs[default_test_tag]
    jif1[default_test_tag] = default_test_val
    assert not len(jif1.get_differing_tags(jif1copy))  # Even though jif1copy doesn't have the tag,
    # it won't be recognized as a difference since it is in the default_inputs and matches the default value
    jif1copy["elec-n-bands"] = 20001
    assert len(jif1.get_filtered_differing_tags(jif1copy))  # Change in elec-n-bands should be recognized
    assert not len(
        jif1.get_filtered_differing_tags(jif1copy, exclude_tags=["elec-n-bands"])
    )  # Specific tags can be filtered out
    assert not len(
        jif1.get_filtered_differing_tags(jif1copy, exclude_tag_categories=["electronic"])
    )  # Tag categories can be filtered out