1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
from __future__ import annotations
import re
from copy import deepcopy
from typing import TYPE_CHECKING, Any
import numpy as np
import pytest
from pymatgen.core.structure import Structure
from pymatgen.io.jdftx.inputs import JDFTXInfile, JDFTXStructure
from pymatgen.io.jdftx.jdftxinfile_default_inputs import default_inputs
from pymatgen.io.jdftx.jdftxinfile_master_format import get_tag_object
from .inputs_test_utils import (
assert_equiv_jdftxstructure,
assert_idential_jif,
ex_in_files_dir,
ex_infile1_fname,
ex_infile1_knowns,
ex_infile2_fname,
ex_infile3_fname,
)
from .shared_test_utils import assert_same_value
if TYPE_CHECKING:
from collections.abc import Callable
from pymatgen.io.jdftx.generic_tags import MultiformatTag, TagContainer
from pymatgen.util.typing import PathLike
def test_jdftxinfile_structuregen():
jif = JDFTXInfile.from_file(ex_infile1_fname)
jdftxstruct = jif.to_jdftxstructure(jif)
assert isinstance(jdftxstruct, JDFTXStructure)
@pytest.mark.parametrize(
("infile_fname", "bool_func"),
[
(ex_infile1_fname, lambda jif: all(jif["kpoint-folding"][x] == 1 for x in jif["kpoint-folding"])),
(ex_infile1_fname, lambda jif: jif["elec-n-bands"] == 15),
],
)
def test_JDFTXInfile_known_lambda(infile_fname: str, bool_func: Callable[[JDFTXInfile], bool]):
jif = JDFTXInfile.from_file(infile_fname)
assert bool_func(jif)
def JDFTXInfile_self_consistency_tester(jif: JDFTXInfile, tmp_path: PathLike):
"""Create an assortment of JDFTXinfile created from the same data but through different methods, and test that
they are all equivalent through "assert_idential_jif" """
dict_jif = jif.as_dict()
# # Commenting out tests with jif2 due to the list representation asserted
jif2 = JDFTXInfile.get_dict_representation(JDFTXInfile._from_dict(dict_jif))
str_list_jif = jif.get_text_list()
str_jif = "\n".join(str_list_jif)
jif3 = JDFTXInfile.from_str(str_jif)
tmp_fname = tmp_path / "tmp.in"
jif.write_file(tmp_fname)
jif4 = JDFTXInfile.from_file(tmp_fname)
jifs = [jif, jif2, jif3, jif4]
for i in range(len(jifs)):
for j in range(i + 1, len(jifs)):
assert_idential_jif(jifs[i], jifs[j])
def test_JDFTXInfile_from_dict(tmp_path) -> None:
jif = JDFTXInfile.from_file(ex_infile1_fname)
jif_dict = jif.as_dict()
# Test that dictionary can be modified and that _from_dict will fix set values
jif_dict["elec-cutoff"] = 20
jif2 = JDFTXInfile.from_dict(jif_dict)
JDFTXInfile_self_consistency_tester(jif2, tmp_path)
@pytest.mark.parametrize("infile_fname", [ex_infile3_fname, ex_infile1_fname, ex_infile2_fname])
def test_JDFTXInfile_self_consistency_fromfile(infile_fname: PathLike, tmp_path) -> None:
"""Test that JDFTXInfile objects with different assortments of tags survive inter-conversion done within
"JDFTXInfile_self_consistency_tester"""
jif = JDFTXInfile.from_file(infile_fname)
JDFTXInfile_self_consistency_tester(jif, tmp_path)
@pytest.mark.parametrize(
("val_key", "val"),
[
("lattice", np.eye(3)),
("fluid-solvent", "H2O 0.5"),
("fluid-solvent", "H2O"),
("latt-scale", "1 1 1"),
("latt-scale", ["1", "1", "1"]),
("latt-scale", [1, 1, 1]),
("latt-scale", {"s0": 1, "s1": 1, "s2": 1}),
("elec-cutoff", {"Ecut": 20.0, "EcutRho": 100.0}),
("elec-cutoff", "20 100"),
("elec-cutoff", [20, 100]),
("elec-cutoff", 20),
],
)
def test_JDFTXInfile_set_values(val_key: str, val: Any, tmp_path) -> None:
"""Test value setting for various tags"""
jif = JDFTXInfile.from_file(ex_infile1_fname)
jif[val_key] = val
# Test that the JDFTXInfile object is still consistent
JDFTXInfile_self_consistency_tester(jif, tmp_path)
@pytest.mark.parametrize(
("val_key", "val"),
[
("fluid-solvent", "H2O"),
("dump", "End DOS"),
("dump", "End DOS BandEigs"),
("dump-interval", "Electronic 1"),
("ion", "Fe 1 1 1 0"),
],
)
def test_JDFTXInfile_append_values(val_key: str, val: Any, tmp_path) -> None:
"""Test the append_tag method"""
jif = JDFTXInfile.from_file(ex_infile1_fname)
val_old = None if val_key not in jif else deepcopy(jif[val_key])
jif.append_tag(val_key, val)
val_new = jif[val_key]
assert val_old != val_new
# Test that the append_tag does not break the JDFTXInfile object
JDFTXInfile_self_consistency_tester(jif, tmp_path)
def test_JDFTXInfile_expected_exceptions():
jif = JDFTXInfile.from_file(ex_infile1_fname)
with pytest.raises(KeyError):
jif["barbie"] = "ken"
# non-repeating tags raise value-errors when appended
tag = "initial-state"
with pytest.raises(ValueError, match=re.escape(f"The tag '{tag}' cannot be repeated and thus cannot be appended")):
jif.append_tag(tag, "$VAR")
# Phonon and Wannier tags raise value-errors at _preprocess_line
with pytest.raises(ValueError, match="Phonon functionality has not been added!"):
jif._preprocess_line("phonon idk")
with pytest.raises(ValueError, match="Wannier functionality has not been added!"):
jif._preprocess_line("wannier idk")
# Tags not in MASTER_TAG_LIST raise value-errors at _preprocess_line
err_str = f"The barbie tag in {['barbie', 'ken allan']} is not in MASTER_TAG_LIST and is not a comment, "
"something is wrong with this input data!"
with pytest.raises(ValueError, match=re.escape(err_str)):
jif._preprocess_line("barbie ken allan")
# include tags raise value-errors if the file cannot be found
_filename = "barbie"
err_str = f"The include file {_filename} ({_filename}) does not exist!"
with pytest.raises(ValueError, match=re.escape(err_str)):
JDFTXInfile.from_str(f"include {_filename}\n")
# If it does exist, no error should be raised
filename = ex_in_files_dir / "barbie"
err_str = f"The include file {_filename} ({filename}) does not exist!"
str(err_str)
# If the wrong parent_path is given for a file that does exist, error
with pytest.raises(ValueError, match=re.escape(err_str)):
JDFTXInfile.from_str(f"include {_filename}\n", path_parent=ex_in_files_dir)
# JDFTXInfile cannot be constructed without lattice and ion tags
with pytest.raises(ValueError, match="This input file is missing required structure tags"):
JDFTXInfile.from_str("dump End DOS\n")
# "barbie" here is supposed to be "list-to-dict" or "dict-to-list"
with pytest.raises(ValueError, match="Conversion type barbie is not 'list-to-dict' or 'dict-to-list'"):
jif._needs_conversion("barbie", ["ken"])
# Setting tags with unfixable values immediately raises an error
tag = "exchange-params"
value = {"blockSize": 1, "nOuterVxx": "barbie"}
err_str = str(f"The {tag} tag with value:\n{value}\ncould not be fixed!")
with pytest.raises(ValueError, match=re.escape(err_str)):
# Implicitly tests validate_tags
jif[tag] = value
# Setting tags with unfixable values through "update" side-steps the error, but will raise it once
# "validate_tags" is inevitably called
jif2 = jif.copy()
jif2.update({tag: value})
with pytest.raises(ValueError, match=re.escape(err_str)):
jif2.validate_tags(try_auto_type_fix=True)
# The inevitable error can be reduced to a warning if you tell it not to try to fix the values
with pytest.warns(UserWarning, match="The exchange-params tag with value"):
jif2.validate_tags(try_auto_type_fix=False)
# Setting a non-string tag raises an error within the JDFTXInfile object
err_str = str(f"{1.2} is not a string!")
with pytest.raises(TypeError, match=err_str):
jif[1.2] = 3.4
def test_JDFTXInfile_strip_structure():
jif = JDFTXInfile.from_file(ex_infile1_fname)
structural_tags = ["lattice", "ion", "coords-type"]
assert all(tag in jif for tag in structural_tags)
jif.strip_structure_tags()
assert all(tag not in jif for tag in structural_tags)
def test_JDFTXInfile_niche_cases():
jif = JDFTXInfile.from_file(ex_infile1_fname)
tag_object, tag, value = jif._preprocess_line("dump-only")
assert value == ("")
tag = "elec-ex-corr"
tag_object = get_tag_object(tag)
value = "gga"
params = jif.as_dict()
err_str = f"The '{tag}' tag appears multiple times in this input when it should not!"
with pytest.raises(ValueError, match=err_str):
jif._store_value(params, tag_object, tag, value)
struct = jif.to_pmg_structure(jif)
assert isinstance(struct, Structure)
noneout = jif.validate_tags(return_list_rep=True)
assert noneout is None
jif["fluid-solvent"] = {"name": "H2O", "concentration": 0.5}
assert len(jif["fluid-solvent"]) == 1
jif.append_tag("fluid-solvent", {"name": "H2O", "concentration": 0.5})
assert len(jif["fluid-solvent"]) == 2
def test_JDFTXInfile_add_method():
"""Test the __add__ method"""
# No new values are being assigned in jif2, so jif + jif2 should be the same as jif
# Since the convenience of this method would be lost if the user has to pay special attention to duplicating
# repeatable values, repeatable tags are not append to each other
jif = JDFTXInfile.from_file(ex_infile1_fname)
jif2 = jif.copy()
assert jif2 is not jif # Testing robustness of copy method while we are at it
jif3 = jif + jif2
assert_idential_jif(jif, jif3)
# If a tag is repeated, the values must be the same since choice of value is ambiguous
key = "elec-ex-corr"
val_old = deepcopy(jif[key])
val_new = "lda"
assert val_old != val_new
jif2[key] = val_new
jif4 = jif + jif2
assert_same_value(jif4[key], val_new) # Make sure addition chooses second value for non-repeatable tags
del jif4
jif2.append_tag("dump", "Fluid State")
jif.append_tag("dump", "Fluid Berry")
jif4 = jif + jif2
assert len(jif4["dump"]) == len(jif2["dump"]) + 1
assert {"Fluid": {"State": True}} in jif4["dump"]
assert {"Fluid": {"State": True}} not in jif["dump"]
assert {"Fluid": {"Berry": True}} in jif4["dump"]
assert {"Fluid": {"Berry": True}} not in jif2["dump"]
# Normal expected behavior
key_add = "target-mu"
val_add = 0.5
assert key_add not in jif
jif2 = jif.copy()
jif2[key_add] = val_add
jif3 = jif + jif2
assert jif3[key_add]["mu"] == pytest.approx(val_add)
@pytest.mark.parametrize(("infile_fname", "knowns"), [(ex_infile1_fname, ex_infile1_knowns)])
def test_JDFTXInfile_knowns_simple(infile_fname: PathLike, knowns: dict):
"""Test that known values that can be tested with assert_same_value are correct"""
jif = JDFTXInfile.from_file(infile_fname)
for key, val in knowns.items():
assert_same_value(jif[key], val)
def test_jdftxstructure():
"""Test the JDFTXStructure object associated with the JDFTXInfile object"""
jif = JDFTXInfile.from_file(ex_infile2_fname)
struct = jif.to_jdftxstructure(jif)
assert isinstance(struct, JDFTXStructure)
struc_str = str(struct)
assert isinstance(struc_str, str)
newstruct = JDFTXStructure.from_str(struc_str)
assert isinstance(newstruct, JDFTXStructure)
# Double checking I got the column/row order right
assert_same_value(struct.structure.lattice, newstruct.structure.lattice)
assert struct.natoms == 16
with open(ex_infile2_fname) as f:
lines = list.copy(list(f))
# Test different ways of creating a JDFTXStructure object create the same object if data is the same
data = "\n".join(lines)
struct2 = JDFTXStructure.from_str(data)
assert_equiv_jdftxstructure(struct, struct2)
struct3 = JDFTXStructure.from_dict(struct.as_dict())
assert_equiv_jdftxstructure(struct, struct3)
def test_pmg_struc():
jif = JDFTXInfile.from_file(ex_infile2_fname)
struc1 = jif.to_pmg_structure(jif)
struc2 = jif.structure
for s in [struc1, struc2]:
assert isinstance(s, Structure)
assert_idential_jif(struc1.as_dict(), struc2.as_dict())
def test_jdftxtructure_naming():
"""Test the naming of the JDFTXStructure object.
Test to make sure reading from a Structure with labels not exactly matching the element names
(ie Si0, Si1, or Si+2) will still be read correctly.
"""
struct = Structure.from_file(ex_in_files_dir / "Si.cif")
jstruct = JDFTXStructure(structure=struct)
JDFTXInfile.from_jdftxstructure(jstruct)
JDFTXInfile.from_structure(struct)
@pytest.mark.parametrize(
("value_str", "expected_dict"),
[
(
"H 1.0 1.0 1.0 0",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"moveScale": 0,
},
),
(
"H 1.0 1.0 1.0 v 1.0 1.0 1.0 0",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"v": {
"vx0": 1.0,
"vx1": 1.0,
"vx2": 1.0,
},
"moveScale": 0,
},
),
(
"H 1.0 1.0 1.0 1 Linear 1.0 1.0 1.0",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"moveScale": 1,
"constraint type": "Linear",
"d0": 1.0,
"d1": 1.0,
"d2": 1.0,
},
),
(
"H 1.0 1.0 1.0 1 HyperPlane 1.0 1.0 1.0 g1 HyperPlane 1.0 1.0 1.0 g1",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"moveScale": 1,
"HyperPlane": [
{
"d0": 1.0,
"d1": 1.0,
"d2": 1.0,
"group": "g1",
},
{
"d0": 1.0,
"d1": 1.0,
"d2": 1.0,
"group": "g1",
},
],
},
),
],
)
def test_ion_reading(value_str: str, expected_dict: dict):
ion_tag: MultiformatTag = get_tag_object("ion")
i = ion_tag.get_format_index_for_str_value("ion", value_str)
tag_object: TagContainer = ion_tag.format_options[i]
parsed_tag = tag_object.read("ion", value_str)
assert_same_value(parsed_tag, expected_dict)
@pytest.mark.parametrize(
("expected_out", "stored_dict"),
[
(
"ion H 1.000000000000 1.000000000000 1.000000000000 0",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"moveScale": 0,
},
),
(
"ion H 1.000000000000 1.000000000000 1.000000000000 v 1.000000000000 1.000000000000 1.000000000000 0",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"v": {
"vx0": 1.0,
"vx1": 1.0,
"vx2": 1.0,
},
"moveScale": 0,
},
),
(
"ion H 1.000000000000 1.000000000000 1.000000000000 1 Linear 1.000000000000 1.000000000000 1.000000000000",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"moveScale": 1,
"constraint type": "Linear",
"d0": 1.0,
"d1": 1.0,
"d2": 1.0,
},
),
(
"ion H 1.000000000000 1.000000000000 1.000000000000 1 HyperPlane 1.000000000000 1.000000000000 "
"1.000000000000 g1 HyperPlane 1.000000000000 1.000000000000 1.000000000000 g1",
{
"species-id": "H",
"x0": 1.0,
"x1": 1.0,
"x2": 1.0,
"moveScale": 1,
"HyperPlane": [
{
"d0": 1.0,
"d1": 1.0,
"d2": 1.0,
"group": "g1",
},
{
"d0": 1.0,
"d1": 1.0,
"d2": 1.0,
"group": "g1",
},
],
},
),
],
)
def test_ion_writing(expected_out: str, stored_dict: dict):
ion_tag: MultiformatTag = get_tag_object("ion")
i, _ = ion_tag._determine_format_option("ion", stored_dict)
tag_object: TagContainer = ion_tag.format_options[i]
output = tag_object.write("ion", stored_dict)
assert_same_value(output.strip().split(), expected_out.strip().split())
@pytest.mark.parametrize(
("lattice_type", "value_str"),
[
("Rhombohedral", "Rhombohedral 1.0 1.0"),
("Triclinic", "Triclinic 1.0 1.0 1.0 1.0 1.0 1.0"),
("Hexagonal", "Hexagonal 1.0 1.0"),
("Cubic", "Body-Centered Cubic 1.0"),
("Cubic", "Cubic 1.0"),
],
)
def test_lattice_reading(lattice_type: str, value_str: str):
mft_lattice_tag = get_tag_object("lattice")
assert mft_lattice_tag is not None
i = mft_lattice_tag.get_format_index_for_str_value("lattice", value_str)
tag_object = mft_lattice_tag.format_options[i]
parsed_tag = tag_object.read("lattice", value_str)
assert lattice_type in parsed_tag
@pytest.mark.parametrize(
("value_str"),
[
("Rhombohedral 1.0 1.0"),
("Triclinic 1.0 1.0 1.0 1.0 1.0 1.0"),
("Hexagonal 1.0 1.0"),
("Body-Centered Cubic 1.0"),
("Cubic 1.0"),
("Orthorhombic 1.0 1.0 1.0"),
("Base-Centered Orthorhombic 1.0 1.0 1.0"),
("Monoclinic 1.0 1.0 1.0 1.0"),
("Base-Centered Monoclinic 1.0 1.0 1.0 1.0"),
("Tetragonal 1.0 1.0"),
("Body-Centered Tetragonal 1.0 1.0"),
],
)
def test_lattice_writing(value_str: str):
mft_lattice_tag = get_tag_object("lattice")
assert mft_lattice_tag is not None
i = mft_lattice_tag.get_format_index_for_str_value("lattice", value_str)
tag_object = mft_lattice_tag.format_options[i]
parsed_tag = tag_object.read("lattice", value_str)
output = tag_object.write("lattice", parsed_tag)
assert_same_value(
("lattice " + value_str).strip().split(),
output.strip().split(),
)
@pytest.mark.parametrize(
("value_str"),
[
("Rhombohedral 1.0 1.0"),
("Triclinic 1.0 1.0 1.0 1.0 1.0 1.0"),
("Hexagonal 1.0 1.0"),
("Body-Centered Cubic 1.0"),
("Cubic 1.0"),
("Orthorhombic 1.0 1.0 1.0"),
("Base-Centered Orthorhombic 1.0 1.0 1.0"),
("Monoclinic 1.0 1.0 1.0 1.0"),
("Base-Centered Monoclinic 1.0 1.0 1.0 1.0"),
("Tetragonal 1.0 1.0"),
("Body-Centered Tetragonal 1.0 1.0"),
],
)
def test_jdftxstructure_lattice_conversion(value_str: str):
test_vars = ["a", "b", "c", "alpha", "beta", "gamma"]
mft_lattice_tag = get_tag_object("lattice")
assert mft_lattice_tag is not None
i = mft_lattice_tag.get_format_index_for_str_value("lattice", value_str)
tag_object = mft_lattice_tag.format_options[i]
parsed_tag = tag_object.read("lattice", value_str)
infile = JDFTXInfile.from_str("lattice " + value_str + "\n ion H 0.0 0.0 0.0 0", dont_require_structure=True)
if "modification" in parsed_tag:
with pytest.raises(NotImplementedError):
_ = infile.to_pmg_structure(infile)
else:
structure = infile.to_pmg_structure(infile)
for var in test_vars:
if var in parsed_tag:
assert_same_value(float(getattr(structure.lattice, var)), float(parsed_tag[var]))
def test_jdftxinfile_comparison():
jif1 = JDFTXInfile.from_file(ex_infile1_fname)
jif2 = JDFTXInfile.from_file(ex_infile2_fname)
assert len(jif1.get_differing_tags(jif2)) # At least one tag should be different
jif1copy = jif1.copy()
assert not len(jif1.get_differing_tags(jif1copy)) # No tags should be different
default_test_tag = "davidson-band-ratio"
default_test_val = default_inputs[default_test_tag]
jif1[default_test_tag] = default_test_val
assert not len(jif1.get_differing_tags(jif1copy)) # Even though jif1copy doesn't have the tag,
# it won't be recognized as a difference since it is in the default_inputs and matches the default value
jif1copy["elec-n-bands"] = 20001
assert len(jif1.get_filtered_differing_tags(jif1copy)) # Change in elec-n-bands should be recognized
assert not len(
jif1.get_filtered_differing_tags(jif1copy, exclude_tags=["elec-n-bands"])
) # Specific tags can be filtered out
assert not len(
jif1.get_filtered_differing_tags(jif1copy, exclude_tag_categories=["electronic"])
) # Tag categories can be filtered out
|