1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
from __future__ import annotations
from pytest import approx
from pymatgen.core.structure import Molecule
from pymatgen.io.adf import AdfInput, AdfKey, AdfOutput, AdfTask
from pymatgen.util.testing import TEST_FILES_DIR, MatSciTest
__author__ = "Xin Chen, chenxin13@mails.tsinghua.edu.cn"
TEST_DIR = f"{TEST_FILES_DIR}/io/adf"
geometry_string = """GEOMETRY
smooth conservepoints
optim all cartesian
iterations 250
step rad=0.15 angle=10.0
hessupd BFGS
converge e=0.001 grad=0.0003 rad=0.01 angle=0.5
END
"""
zlm_fit_string = """ZLMFIT
AtomDepQuality
10 good
12 normal
subend
END
"""
atoms_string = """ATOMS
O -0.90293455 0.66591421 0.00000000
H 0.05706545 0.66591421 0.00000000
H -1.22338913 1.57085004 0.00000000
END
"""
h2o_xyz = """3
0.0
O -0.90293455 0.66591421 0.0
H 0.05706545 0.66591421 0.0
H -1.22338913 1.57085004 0.0
"""
rhb18_xyz = """19
0.0
Rh -0.453396 -0.375115 0.000000
B 0.168139 3.232791 0.000000
B -0.270938 1.639058 0.000000
B 0.206283 2.604044 1.459430
B 0.404410 1.880136 2.866764
B -0.103309 0.887485 1.655272
B 0.436856 0.371367 3.299887
B 0.016593 -0.854959 1.930982
B 0.563233 -1.229713 3.453066
B 0.445855 -2.382027 2.415013
B 0.206283 2.604044 -1.459430
B 0.404410 1.880136 -2.866764
B -0.103309 0.887485 -1.655272
B 0.436856 0.371367 -3.299887
B 0.563233 -1.229713 -3.453066
B 0.016593 -0.854959 -1.930982
B 0.200456 -2.309538 -0.836316
B 0.200456 -2.309538 0.836316
B 0.445855 -2.382027 -2.415013
"""
def readfile(file_object):
"""`
Return the content of the file as a string.
Args:
file_object (file or str): The file to read. This can be either a File object or a file path.
Returns:
content (str): The content of the file.
"""
if hasattr(file_object, "read"):
return file_object.read()
with open(file_object, encoding="utf-8") as file:
return file.read()
class TestAdfKey:
def test_simple(self):
unrestricted = AdfKey("unrestricted")
assert str(unrestricted).strip() == "UNRESTRICTED"
def test_options(self):
charge = AdfKey("charge", [-1, 0])
charge_string = "CHARGE -1 0\n"
assert str(charge) == "CHARGE -1 0\n"
assert str(AdfKey.from_dict(charge.as_dict())) == charge_string
def test_subkeys(self):
smooth = AdfKey("smooth", ["conservepoints"])
optim = AdfKey("optim", ["all", "cartesian"])
iterations = AdfKey("iterations", [250])
step = AdfKey("step", [("rad", 0.15), ("angle", 10.0)])
hessupd = AdfKey("hessupd", ["BFGS"])
converge = AdfKey(
"converge",
[("e", 1.0e-3), ("grad", 3.0e-4), ("rad", 1.0e-2), ("angle", 0.5)],
)
geo = AdfKey("geometry", subkeys=[smooth, optim, iterations, step, hessupd, converge])
assert str(geo) == geometry_string
assert str(AdfKey.from_dict(geo.as_dict())) == geometry_string
assert geo.has_subkey("optim")
def test_end(self):
geo = AdfKey("Geometry")
assert str(geo) == "GEOMETRY\nEND\n"
def test_subkeys_subkeys(self):
atom_dep_quality = AdfKey("AtomDepQuality", subkeys=[AdfKey("10", ["good"]), AdfKey("12", ["normal"])])
zlmfit = AdfKey("zlmfit", subkeys=[atom_dep_quality])
assert str(zlmfit) == zlm_fit_string
assert str(AdfKey.from_dict(zlmfit.as_dict())) == zlm_fit_string
def test_from_str(self):
k1 = AdfKey.from_str("CHARGE -1 0")
assert k1.key == "CHARGE"
assert k1.options == [-1, 0]
k2 = AdfKey.from_str("step rad=0.15 angle=10.0")
assert k2.key == "step"
assert k2.options[0] == ["rad", approx(0.15)]
assert k2.options[1] == ["angle", approx(10.0)]
k3 = AdfKey.from_str("GEOMETRY\noptim all\niterations 100\nEND\n")
assert k3.key == "GEOMETRY"
assert k3.subkeys[0].options[0] == "all"
assert k3.subkeys[1].options[0] == 100
k4 = AdfKey.from_str(
"""SCF
iterations 300
converge 1.0e-7 1.0e-7
mixing 0.2
diis n=100 ok=0.0001 cyc=100 cx=5.0 cxx=10.0
END"""
)
assert k4.key == "SCF"
assert k4.subkeys[0].key == "iterations"
assert k4.subkeys[1].key == "converge"
assert k4.subkeys[1].options[0] == approx(1e-7)
assert k4.subkeys[2].options[0] == approx(0.2)
def test_option_operations(self):
k1 = AdfKey("Charge", [-1, 0])
k1.add_option(2)
assert k1.options == [-1, 0, 2]
k1.remove_option(0)
assert k1.options == [0, 2]
k2 = AdfKey.from_str("step rad=0.15 angle=10.0")
k2.add_option(["length", 0.1])
assert k2.options[2] == ["length", approx(0.1)]
k2.remove_option("rad")
assert k2.options[0] == ["angle", approx(10.0)]
def test_atom_block_key(self):
block = AdfKey("atoms")
mol = Molecule.from_str(h2o_xyz, "xyz")
for site in mol:
block.add_subkey(AdfKey(str(site.specie), list(site.coords)))
assert str(block) == atoms_string
energy_task = """TITLE ADF_RUN
UNITS
length angstrom
angle degree
END
XC
GGA PBE
END
BASIS
type DZ
core small
END
SCF
iterations 300
END
GEOMETRY SinglePoint
END
"""
class TestAdfTask:
def test_energy(self):
task = AdfTask()
assert str(task) == energy_task
def test_serialization(self):
task = AdfTask()
adf_task = AdfTask.from_dict(task.as_dict())
assert task.title == adf_task.title
assert task.basis_set == adf_task.basis_set
assert task.scf == adf_task.scf
assert task.geo == adf_task.geo
assert task.operation == adf_task.operation
assert task.units == adf_task.units
assert str(task) == str(adf_task)
rhb18 = {
"title": "RhB18",
"basis_set": AdfKey.from_str("BASIS\ntype TZP\ncore small\nEND"),
"xc": AdfKey.from_str("XC\nHybrid PBE0\nEND"),
"units": AdfKey.from_str("UNITS\nlength angstrom\nEND"),
"other_directives": [
AdfKey.from_str("SYMMETRY"),
AdfKey.from_str("RELATIVISTIC scalar zora"),
AdfKey.from_str("INTEGRATION 6.0 6.0 6.0"),
AdfKey.from_str("SAVE TAPE21"),
AdfKey.from_str("A1FIT 10.0"),
],
"geo_subkeys": [
AdfKey.from_str("optim all"),
AdfKey.from_str("iterations 300"),
AdfKey.from_str("step rad=0.15 angle=10.0"),
AdfKey.from_str("hessupd BFGS"),
],
"scf": AdfKey.from_str(
"""SCF
iterations 300
converge 1.0e-7 1.0e-7
mixing 0.2
lshift 0.0
diis n=100 ok=0.0001 cyc=100 cx=5.0 cxx=10.0
END"""
),
}
class TestAdfInput(MatSciTest):
def test_main(self):
tmp_file = f"{self.tmp_path}/adf.temp"
mol = Molecule.from_str(rhb18_xyz, "xyz")
mol.set_charge_and_spin(-1, 3)
task = AdfTask("optimize", **rhb18)
inp = AdfInput(task)
inp.write_file(mol, tmp_file)
expected = readfile(f"{TEST_DIR}/RhB18_adf.inp")
assert readfile(tmp_file) == expected
class TestAdfOutput:
def test_analytical_freq(self):
filename = f"{TEST_DIR}/analytical_freq/adf.out"
adf_out = AdfOutput(filename)
assert adf_out.final_energy == approx(-0.54340325)
assert len(adf_out.energies) == 4
assert len(adf_out.structures) == 4
assert adf_out.frequencies[0] == approx(1553.931)
assert adf_out.frequencies[2] == approx(3793.086)
assert adf_out.normal_modes[0][2] == approx(0.071)
assert adf_out.normal_modes[0][6] == approx(0.000)
assert adf_out.normal_modes[0][7] == approx(-0.426)
assert adf_out.normal_modes[0][8] == approx(-0.562)
def test_numerical_freq(self):
filename = f"{TEST_DIR}/numerical_freq/adf.out"
adf_out = AdfOutput(filename)
assert adf_out.freq_type == "Numerical"
assert len(adf_out.final_structure) == 4
assert len(adf_out.frequencies) == 6
assert len(adf_out.normal_modes) == 6
assert adf_out.frequencies[0] == approx(938.21)
assert adf_out.frequencies[3] == approx(3426.64)
assert adf_out.frequencies[4] == approx(3559.35)
assert adf_out.frequencies[5] == approx(3559.35)
assert adf_out.normal_modes[1][0] == approx(0.067)
assert adf_out.normal_modes[1][3] == approx(-0.536)
assert adf_out.normal_modes[1][7] == approx(0.000)
assert adf_out.normal_modes[1][9] == approx(-0.536)
def test_single_point(self):
filename = f"{TEST_DIR}/sp/adf.out"
adf_out = AdfOutput(filename)
assert adf_out.final_energy == approx(-0.74399276)
assert len(adf_out.final_structure) == 4
|