1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
"""Script to visualize the model coordination environments."""
from __future__ import annotations
import copy
import json
from typing import TYPE_CHECKING
import matplotlib.pyplot as plt
import numpy as np
from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import (
AngleNbSetWeight,
CNBiasNbSetWeight,
DeltaCSMNbSetWeight,
DistanceAngleAreaNbSetWeight,
MultiWeightsChemenvStrategy,
NormalizedAngleDistanceNbSetWeight,
SelfCSMNbSetWeight,
)
from pymatgen.analysis.chemenv.coordination_environments.coordination_geometries import AllCoordinationGeometries
from pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder import (
AbstractGeometry,
LocalGeometryFinder,
)
from pymatgen.core.lattice import Lattice
from pymatgen.core.structure import Structure
if TYPE_CHECKING:
from collections.abc import Sequence
__author__ = "David Waroquiers"
__copyright__ = "Copyright 2012, The Materials Project"
__version__ = "2.0"
__maintainer__ = "David Waroquiers"
__email__ = "david.waroquiers@gmail.com"
__date__ = "Feb 20, 2016"
all_cg = AllCoordinationGeometries()
class CoordinationEnvironmentMorphing:
"""Morph a coordination environment into another one."""
def __init__(
self,
initial_environment_symbol,
expected_final_environment_symbol,
morphing_description,
):
self.initial_environment_symbol = initial_environment_symbol
self.expected_final_environment_symbol = expected_final_environment_symbol
self.morphing_description = morphing_description
self.coordination_geometry = all_cg.get_geometry_from_mp_symbol(initial_environment_symbol)
self.abstract_geometry = AbstractGeometry.from_cg(self.coordination_geometry)
@classmethod
def simple_expansion(
cls,
initial_environment_symbol,
expected_final_environment_symbol,
neighbors_indices,
) -> CoordinationEnvironmentMorphing:
"""Simple expansion of a coordination environment.
Args:
initial_environment_symbol (str): The initial coordination environment symbol.
expected_final_environment_symbol (str): The expected final coordination environment symbol.
neighbors_indices (list): The indices of the neighbors to be expanded.
Returns:
CoordinationEnvironmentMorphing
"""
morphing_description = [
{
"ineighbor": nbr_idx,
"site_type": "neighbor",
"expansion_origin": "central_site",
}
for nbr_idx in neighbors_indices
]
return cls(
initial_environment_symbol=initial_environment_symbol,
expected_final_environment_symbol=expected_final_environment_symbol,
morphing_description=morphing_description,
)
def figure_fractions(self, weights_options: dict, morphing_factors: Sequence[float] | None = None) -> None:
"""Plot the fractions of the initial and final coordination environments as a
function of the morphing factor.
Args:
weights_options (dict): The weights options. morphing_factors (list): The
morphing factors.
"""
if morphing_factors is None:
morphing_factors = np.linspace(1.0, 2.0, 21)
# Set up the local geometry finder
lgf = LocalGeometryFinder()
lgf.setup_parameters(structure_refinement=lgf.STRUCTURE_REFINEMENT_NONE)
# Set up the weights for the MultiWeights strategy
weights = self.get_weights(weights_options)
# Set up the strategy
strategy = MultiWeightsChemenvStrategy(
dist_ang_area_weight=weights["DistAngArea"],
self_csm_weight=weights["SelfCSM"],
delta_csm_weight=weights["DeltaCSM"],
cn_bias_weight=weights["CNBias"],
angle_weight=weights["Angle"],
normalized_angle_distance_weight=weights["NormalizedAngDist"],
)
fake_valences = [-1] * (self.coordination_geometry.coordination_number + 1)
fake_valences[0] = 1
fractions_initial_environment = np.zeros_like(morphing_factors)
fractions_final_environment = np.zeros_like(morphing_factors)
for ii, morphing_factor in enumerate(morphing_factors):
print(ii)
struct = self.get_structure(morphing_factor=morphing_factor)
print(struct)
# Get the StructureEnvironments
lgf.setup_structure(structure=struct)
se = lgf.compute_structure_environments(only_indices=[0], valences=fake_valences)
strategy.set_structure_environments(structure_environments=se)
result = strategy.get_site_coordination_environments_fractions(
site=se.structure[0],
isite=0,
return_strategy_dict_info=True,
return_all=True,
)
for res in result:
if res["ce_symbol"] == self.initial_environment_symbol:
fractions_initial_environment[ii] = res["ce_fraction"]
elif res["ce_symbol"] == self.expected_final_environment_symbol:
fractions_final_environment[ii] = res["ce_fraction"]
fig_width_cm = 8.25
fig_height_cm = 7.0
fig_width = fig_width_cm / 2.54
fig_height = fig_height_cm / 2.54
fig = plt.figure(num=1, figsize=(fig_width, fig_height))
ax = fig.add_subplot(111)
ax.plot(
morphing_factors,
fractions_initial_environment,
"b-",
label=self.initial_environment_symbol,
linewidth=1.5,
)
ax.plot(
morphing_factors,
fractions_final_environment,
"g--",
label=self.expected_final_environment_symbol,
linewidth=1.5,
)
plt.legend(fontsize=8.0, loc=7)
plt.show()
def get_structure(self, morphing_factor):
lattice = Lattice.cubic(5.0)
species = ["O"] * (self.coordination_geometry.coordination_number + 1)
species[0] = "Cu"
coords = copy.deepcopy(self.abstract_geometry.points_wcs_ctwcc())
bare_points = self.abstract_geometry.bare_points_with_centre
origin = None
for morphing in self.morphing_description:
if morphing["site_type"] != "neighbor":
raise ValueError(f'Key "site_type" is {morphing["site_type"]} while it can only be neighbor')
site_idx = morphing["ineighbor"] + 1
if morphing["expansion_origin"] == "central_site":
origin = bare_points[0]
vector = bare_points[site_idx] - origin
coords[site_idx] += vector * (morphing_factor - 1.0)
return Structure(lattice=lattice, species=species, coords=coords, coords_are_cartesian=True)
def estimate_parameters(self, dist_factor_min, dist_factor_max, symmetry_measure_type="csm_wcs_ctwcc"):
only_symbols = [
self.initial_environment_symbol,
self.expected_final_environment_symbol,
]
# Set up the local geometry finder
lgf = LocalGeometryFinder()
lgf.setup_parameters(structure_refinement=lgf.STRUCTURE_REFINEMENT_NONE)
# Get the StructureEnvironments
fake_valences = [-1] * (self.coordination_geometry.coordination_number + 1)
fake_valences[0] = 1
# Get the StructureEnvironments for the structure with dist_factor_min
struct = self.get_structure(morphing_factor=dist_factor_min)
lgf.setup_structure(structure=struct)
se = lgf.compute_structure_environments(only_indices=[0], valences=fake_valences, only_symbols=only_symbols)
csm_info = se.get_csms(isite=0, mp_symbol=self.initial_environment_symbol)
if len(csm_info) == 0:
raise ValueError(f"No csm found for {self.initial_environment_symbol}")
csm_info.sort(key=lambda x: x["other_symmetry_measures"][symmetry_measure_type])
csm_initial_min_dist = csm_info[0]["other_symmetry_measures"][symmetry_measure_type]
csm_info = se.get_csms(isite=0, mp_symbol=self.expected_final_environment_symbol)
if len(csm_info) == 0:
raise ValueError(f"No csm found for {self.initial_environment_symbol}")
csm_info.sort(key=lambda x: x["other_symmetry_measures"][symmetry_measure_type])
csm_final = csm_info[0]["other_symmetry_measures"][symmetry_measure_type]
if not np.isclose(csm_final, 0.0, rtol=0.0, atol=1e-10):
raise ValueError("Final coordination is not perfect !")
# Get the StructureEnvironments for the structure with dist_factor_max
struct = self.get_structure(morphing_factor=dist_factor_max)
lgf.setup_structure(structure=struct)
se = lgf.compute_structure_environments(only_indices=[0], valences=fake_valences, only_symbols=only_symbols)
csm_info = se.get_csms(isite=0, mp_symbol=self.initial_environment_symbol)
if len(csm_info) == 0:
raise ValueError(f"No csm found for {self.initial_environment_symbol}")
csm_info.sort(key=lambda x: x["other_symmetry_measures"][symmetry_measure_type])
csm_initial_max_dist = csm_info[0]["other_symmetry_measures"][symmetry_measure_type]
csm_info = se.get_csms(isite=0, mp_symbol=self.expected_final_environment_symbol)
if len(csm_info) == 0:
raise ValueError(f"No csm found for {self.initial_environment_symbol}")
csm_info.sort(key=lambda x: x["other_symmetry_measures"][symmetry_measure_type])
csm_final = csm_info[0]["other_symmetry_measures"][symmetry_measure_type]
if not np.isclose(csm_final, 0.0, rtol=0.0, atol=1e-10):
raise ValueError("Final coordination is not perfect !")
return {
"delta_csm_min": csm_initial_min_dist,
"self_weight_max_csm": csm_initial_max_dist,
}
def get_weights(self, weights_options):
effective_csm_estimator = {
"function": "power2_inverse_decreasing",
"options": {"max_csm": 8.0},
}
self_weight_estimator = {
"function": "power2_decreasing_exp",
"options": {"max_csm": 5.4230949041608305, "alpha": 1.0},
}
self_csm_weight = SelfCSMNbSetWeight(
effective_csm_estimator=effective_csm_estimator,
weight_estimator=self_weight_estimator,
)
surface_definition = {
"type": "standard_elliptic",
"distance_bounds": {"lower": 1.05, "upper": 2.0},
"angle_bounds": {"lower": 0.05, "upper": 0.95},
}
da_area_weight = DistanceAngleAreaNbSetWeight(
weight_type="has_intersection",
surface_definition=surface_definition,
nb_sets_from_hints="fallback_to_source",
other_nb_sets="0_weight",
additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB,
)
weight_estimator = {
"function": "smootherstep",
"options": {"delta_csm_min": 0.5, "delta_csm_max": 3.0},
}
symmetry_measure_type = "csm_wcs_ctwcc"
delta_csm_weight = DeltaCSMNbSetWeight(
effective_csm_estimator=effective_csm_estimator,
weight_estimator=weight_estimator,
symmetry_measure_type=symmetry_measure_type,
)
bias_weight = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0, weight_cn13=4.0)
angle_weight = AngleNbSetWeight()
nad_weight = NormalizedAngleDistanceNbSetWeight(average_type="geometric", aa=1, bb=1)
return {
"DistAngArea": da_area_weight,
"SelfCSM": self_csm_weight,
"DeltaCSM": delta_csm_weight,
"CNBias": bias_weight,
"Angle": angle_weight,
"NormalizedAngDist": nad_weight,
}
if __name__ == "__main__":
print(
"+-------------------------------------------------------------+\n"
"| Development script of the ChemEnv utility of pymatgen |\n"
"| Definition of parameters for the MultiWeightChemenvStrategy |\n"
"+-------------------------------------------------------------+\n"
)
with open("ce_pairs.json", encoding="utf-8") as file:
ce_pairs = json.load(file)
self_weight_max_csms: dict[str, list[float]] = {}
self_weight_max_csms_per_cn: dict[str, list[float]] = {}
all_self_max_csms = []
delta_csm_mins: dict[str, list[float]] = {}
all_delta_csm_mins = []
all_cn_pairs = []
for ii in range(1, 14):
self_weight_max_csms_per_cn[str(ii)] = []
for jj in range(ii + 1, 14):
cn_pair = f"{ii}_{jj}"
self_weight_max_csms[cn_pair] = []
delta_csm_mins[cn_pair] = []
all_cn_pairs.append(cn_pair)
for ce_pair_dict in ce_pairs:
ce1 = ce_pair_dict["initial_environment_symbol"]
ce2 = ce_pair_dict["expected_final_environment_symbol"]
cn_pair = f"{ce2.split(':')[1]}_{ce1.split(':')[1]}"
n_indices = ce_pair_dict["neighbors_indices"]
min_dist = ce_pair_dict["dist_factor_min"]
max_dist = ce_pair_dict["dist_factor_max"]
morph = CoordinationEnvironmentMorphing.simple_expansion(
initial_environment_symbol=ce1,
expected_final_environment_symbol=ce2,
neighbors_indices=n_indices,
)
params = morph.estimate_parameters(dist_factor_min=min_dist, dist_factor_max=max_dist)
print(f"For pair {ce1} to {ce2}, parameters are : ")
print(params)
self_weight_max_csms[cn_pair].append(params["self_weight_max_csm"])
delta_csm_mins[cn_pair].append(params["delta_csm_min"])
all_self_max_csms.append(params["self_weight_max_csm"])
all_delta_csm_mins.append(params["delta_csm_min"])
self_weight_max_csms_per_cn[ce1.split(":")[1]].append(params["self_weight_max_csm"])
fig = plt.figure(1)
ax = fig.add_subplot(111)
for idx, cn_pair in enumerate(all_cn_pairs):
if len(self_weight_max_csms[cn_pair]) == 0:
continue
ax.plot(
idx * np.ones_like(self_weight_max_csms[cn_pair]),
self_weight_max_csms[cn_pair],
"rx",
)
ax.plot(idx * np.ones_like(delta_csm_mins[cn_pair]), delta_csm_mins[cn_pair], "b+")
ax.set_xticks(range(len(all_cn_pairs)))
ax.set_xticklabels(all_cn_pairs, rotation="vertical")
fig.savefig("self_delta_params.pdf")
fig2 = plt.figure(2)
subplot2 = fig2.add_subplot(111)
for cn in range(1, 14):
subplot2.plot(
cn * np.ones_like(self_weight_max_csms_per_cn[str(cn)]),
self_weight_max_csms_per_cn[str(cn)],
"rx",
)
subplot2.set_xticks(range(1, 14))
fig2.savefig("self_params_per_cn.pdf")
print(np.mean(all_self_max_csms))
print(np.mean(all_delta_csm_mins))
fig3 = plt.figure(3, figsize=(24, 12))
subplot3 = fig3.add_subplot(111)
for idx, cn_pair in enumerate(all_cn_pairs):
if len(delta_csm_mins[cn_pair]) == 0:
continue
subplot3.plot(idx * np.ones_like(delta_csm_mins[cn_pair]), delta_csm_mins[cn_pair], "b+")
subplot3.set_xticks(range(len(all_cn_pairs)))
subplot3.set_xticklabels(all_cn_pairs, rotation="vertical")
fig3.savefig("delta_params_per_cn_pair.pdf")
plt.show()
|