1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pymatgen.optimization package — pymatgen 2025.1.24 documentation</title>
<link rel="stylesheet" type="text/css" href="assets/pygments.css?v=fa44fd50" />
<link rel="stylesheet" type="text/css" href="assets/css/theme.css?v=e59714d7" />
<link rel="stylesheet" type="text/css" href="assets/css/custom.css" />
<link rel="canonical" href="https://pymatgen.orgpymatgen.optimization.html"/>
<script src="assets/jquery.js?v=5d32c60e"></script>
<script src="assets/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="assets/documentation_options.js?v=d2bc030c"></script>
<script src="assets/doctools.js?v=9bcbadda"></script>
<script src="assets/sphinx_highlight.js?v=dc90522c"></script>
<script src="assets/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" style="background: linear-gradient(0deg, rgba(23,63,162,1) 0%, rgba(0,70,192,1) 100%)" >
<a href="index.html">
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<!-- Local TOC -->
<div class="local-toc"><ul>
<li><a class="reference internal" href="#">pymatgen.optimization package</a><ul>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pymatgen.optimization.linear_assignment">pymatgen.optimization.linear_assignment module</a><ul>
<li><a class="reference internal" href="#pymatgen.optimization.linear_assignment.LinearAssignment"><code class="docutils literal notranslate"><span class="pre">LinearAssignment</span></code></a><ul>
<li><a class="reference internal" href="#pymatgen.optimization.linear_assignment.LinearAssignment.min_cost"><code class="docutils literal notranslate"><span class="pre">LinearAssignment.min_cost</span></code></a></li>
<li><a class="reference internal" href="#pymatgen.optimization.linear_assignment.LinearAssignment.solution"><code class="docutils literal notranslate"><span class="pre">LinearAssignment.solution</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#module-pymatgen.optimization.neighbors">pymatgen.optimization.neighbors module</a><ul>
<li><a class="reference internal" href="#pymatgen.optimization.neighbors.find_points_in_spheres"><code class="docutils literal notranslate"><span class="pre">find_points_in_spheres()</span></code></a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" style="background: linear-gradient(0deg, rgba(23,63,162,1) 0%, rgba(0,70,192,1) 100%)" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">pymatgen</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content style-external-links">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">pymatgen.optimization package</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/materialsproject/pymatgen/blob/master/docs_rst/pymatgen.optimization.rst" class="fa fa-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="module-pymatgen.optimization">
<span id="pymatgen-optimization-package"></span><h1>pymatgen.optimization package<a class="headerlink" href="#module-pymatgen.optimization" title="Link to this heading"></a></h1>
<p>Optimization utilities.</p>
<section id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Link to this heading"></a></h2>
</section>
<section id="module-pymatgen.optimization.linear_assignment">
<span id="pymatgen-optimization-linear-assignment-module"></span><h2>pymatgen.optimization.linear_assignment module<a class="headerlink" href="#module-pymatgen.optimization.linear_assignment" title="Link to this heading"></a></h2>
<p>This module contains the LAPJV algorithm to solve the Linear Assignment Problem.</p>
<dl class="py class">
<dt class="sig sig-object py" id="pymatgen.optimization.linear_assignment.LinearAssignment">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">LinearAssignment</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">costs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">np.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1e-13</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/materialsproject/pymatgen/blob/v2025.1.24/src/pymatgen/optimization/linear_assignment.py"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pymatgen.optimization.linear_assignment.LinearAssignment" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>This class finds the solution to the Linear Assignment Problem.
It finds a minimum cost matching between two sets, given a cost
matrix.</p>
<p>This class is an implementation of the LAPJV algorithm described in:
R. Jonker, A. Volgenant. A Shortest Augmenting Path Algorithm for
Dense and Sparse Linear Assignment Problems. Computing 38, 325-340
(1987)</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>costs</strong> – The cost matrix of the problem. cost[i,j] should be the
cost of matching x[i] to y[j]. The cost matrix may be
rectangular</p></li>
<li><p><strong>epsilon</strong> – Tolerance for determining if solution vector is < 0</p></li>
</ul>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pymatgen.optimization.linear_assignment.LinearAssignment.min_cost">
<span class="sig-name descname"><span class="pre">min_cost</span></span><a class="reference external" href="https://github.com/materialsproject/pymatgen/blob/v2025.1.24/src/pymatgen/optimization/linear_assignment.py"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pymatgen.optimization.linear_assignment.LinearAssignment.min_cost" title="Link to this definition"></a></dt>
<dd><p>The minimum cost of the matching.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pymatgen.optimization.linear_assignment.LinearAssignment.solution">
<span class="sig-name descname"><span class="pre">solution</span></span><a class="reference external" href="https://github.com/materialsproject/pymatgen/blob/v2025.1.24/src/pymatgen/optimization/linear_assignment.py"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pymatgen.optimization.linear_assignment.LinearAssignment.solution" title="Link to this definition"></a></dt>
<dd><p>The matching of the rows to columns. i.e solution = [1, 2, 0]
would match row 0 to column 1, row 1 to column 2 and row 2
to column 0. Total cost would be c[0, 1] + c[1, 2] + c[2, 0].</p>
</dd></dl>
</dd></dl>
</section>
<section id="module-pymatgen.optimization.neighbors">
<span id="pymatgen-optimization-neighbors-module"></span><h2>pymatgen.optimization.neighbors module<a class="headerlink" href="#module-pymatgen.optimization.neighbors" title="Link to this heading"></a></h2>
<dl class="py function">
<dt class="sig sig-object py" id="pymatgen.optimization.neighbors.find_points_in_spheres">
<span class="sig-name descname"><span class="pre">find_points_in_spheres</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">all_coords</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">center_coords</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">r</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pbc</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lattice</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tol</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-08</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_r</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1.0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/materialsproject/pymatgen/blob/v2025.1.24/src/pymatgen/optimization/neighbors.py"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pymatgen.optimization.neighbors.find_points_in_spheres" title="Link to this definition"></a></dt>
<dd><p>For each point in <cite>center_coords</cite>, get all the neighboring points in <cite>all_coords</cite>
that are within the cutoff radius <cite>r</cite>. All the coordinates should be Cartesian.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>all_coords</strong> – (np.ndarray[double, dim=2]) all available points.
When periodic boundary is considered, this is all the points in the lattice.</p></li>
<li><p><strong>center_coords</strong> – (np.ndarray[double, dim=2]) all centering points</p></li>
<li><p><strong>r</strong> – (float) cutoff radius</p></li>
<li><p><strong>pbc</strong> – (np.ndarray[np.int64_t, dim=1]) whether to set periodic boundaries</p></li>
<li><p><strong>lattice</strong> – (np.ndarray[double, dim=2]) 3x3 lattice matrix</p></li>
<li><p><strong>tol</strong> – (float) numerical tolerance</p></li>
<li><p><strong>min_r</strong> – (float) minimal cutoff to calculate the neighbor list
directly. If the cutoff is less than this value, the algorithm
will calculate neighbor list using min_r as cutoff and discard
those that have larger distances.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Indexes of center_coords.
index2 (n, ): Indexes of all_coords that form the neighbor pair.
offset_vectors (n, 3): The periodic image offsets for all_coords.
distances (n, ).</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>index1 (n, )</p>
</dd>
</dl>
</dd></dl>
</section>
</section>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>© Copyright 2011, Pymatgen Development Team.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>
|