1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
#/*##########################################################################
# Copyright (C) 2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# This file is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
#############################################################################*/
__doc__= "Generate specfile from XCOM generated files"
__author__ = "V.A. Sole - ESRF Software Group"
import sys
import os
import numpy
from PyMca import Elements
if len(sys.argv) < 3:
print("Usage:")
print("python GenerateXCOMTotalCrossSections SPEC_output_filename Barns_flag")
sys.exit(0)
def getHeader(filename):
text = '#F %s\n' % filename
text += '#U00 This file is a direct conversion to specfile format of \n'
text += '#U01 the XCOM selected-arrays output.\n'
text += '#U02 \n'
text += '#U03 XCOM itself can be found at:\n'
text += '#U04 http://www.nist.gov/pml/data/xcom/index.cfm\n'
text += '\n'
return text
fname = sys.argv[1]
if os.path.exists(fname):
os.remove(fname)
if int(sys.argv[2]):
BARNS = True
else:
BARNS = False
print("BARNS = %s" % BARNS)
outfile = open(fname, 'wb')
outfile.write(getHeader(fname))
for i in range(1, 101):
ele = Elements.getsymbol(i)
print("i = %d element = %s" % (i, ele))
# force data readout
dataDict = Elements.getelementmassattcoef(ele)
# pure XCOM data
dataDict = Elements.Element[ele]['xcom']
# energy (keV)
energy = dataDict['energy']
# coherent (cm2/g)
cohe = dataDict['coherent']
# incoherent
incohe = dataDict['compton']
# photoelectric
photo = dataDict['photo']
# photoelectric
pair = dataDict['pair']
# total
total = dataDict['total']
# convert to keV and cut at 500 keV not done for XCOM
# indices = numpy.nonzero(energy<=500.)
# energy = energy[indices]
# photo = photo[indices]
# cohe = cohe[indices]
# incohe = incohe[indices]
# I do not cut at 500 keV. I need to take the pair production
total = photo + cohe + incohe + pair
#now I am ready to write a Specfile
text = '#S %d %s\n' % (i, ele)
text += '#N 5\n'
labels = '#L PhotonEnergy[keV]'
labels += ' Rayleigh(coherent)[barn/atom]'
labels += ' Compton(incoherent)[barn/atom]'
labels += ' CoherentPlusIncoherent[barn/atom]'
labels += ' Photoelectric[barn/atom]'
labels += ' PairProduction[barn/atom]'
labels += ' TotalCrossSection[barn/atom]\n'
if not BARNS:
labels = labels.replace("barn/atom", "cm2/g")
factor = 1.0
else:
factor = Elements.Element[ele]['mass'] /(1.0E-24*AVOGADRO_NUMBER)
text += labels
if 0:
fformat = "%g %g %g %g %g %g %g\n"
else:
fformat = "%.6E %.6E %.6E %.6E %.6E %.6E %.6E\n"
outfile.write(text)
for n in range(len(energy)):
line = fformat % (energy[n],
cohe[n] * factor,
incohe[n] * factor,
(cohe[n] + incohe[n]) * factor,
photo[n] * factor,
pair[n] * factor,
total[n] * factor)
outfile.write(line)
outfile.write('\n')
outfile.close()
|