File: FastXRFLinearFitStackPlugin.py

package info (click to toggle)
pymca 4.7.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,352 kB
  • ctags: 9,570
  • sloc: python: 116,490; ansic: 18,322; cpp: 826; sh: 57; xml: 24; makefile: 19
file content (287 lines) | stat: -rw-r--r-- 10,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#/*##########################################################################
# Copyright (C) 2013-2014 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
"""

A Stack plugin is a module that will be automatically added to the PyMca stack windows
in order to perform user defined operations on the data stack.

These plugins will be compatible with any stack window that provides the functions:
    #data related
    getStackDataObject
    getStackData
    getStackInfo
    setStack

    #images related
    addImage
    removeImage
    replaceImage

    #mask related
    setSelectionMask
    getSelectionMask

    #displayed curves
    getActiveCurve
    getGraphXLimits
    getGraphYLimits

    #information method
    stackUpdated
    selectionMaskUpdated
"""
import sys
import os
import numpy
import time
from PyMca import StackPluginBase
from PyMca import FastXRFLinearFit
from PyMca import FastXRFLinearFitWindow
from PyMca import CalculationThread
from PyMca import StackPluginResultsWindow
import PyMca.PyMca_Icons as PyMca_Icons
from PyMca import PyMcaQt as qt
from PyMca.PyMcaIO import ArraySave

DEBUG = 0

class FastXRFLinearFitStackPlugin(StackPluginBase.StackPluginBase):
    def __init__(self, stackWindow, **kw):
        StackPluginBase.DEBUG = DEBUG
        StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw)
        self.methodDict = {}
        function = self.calculate
        info = "Fit stack with current fit configuration"
        icon = PyMca_Icons.fit
        self.methodDict["Fit Stack"] =[function,
                                       info,
                                       icon]
        function = self._showWidget
        info = "Show last results"
        icon = PyMca_Icons.brushselect
        self.methodDict["Show"] =[function,
                                  info,
                                  icon]
        self.__methodKeys = ["Fit Stack", "Show"]
        self.configurationWidget = None
        self.fitInstance = None
        self._widget = None
        self.thread = None

    def stackUpdated(self):
        if DEBUG:
            print("FastXRFLinearFitStackPlugin.stackUpdated() called")
        self._widget = None

    def selectionMaskUpdated(self):
        if self._widget is None:
            return
        if self._widget.isHidden():
            return
        mask = self.getStackSelectionMask()
        self._widget.setSelectionMask(mask)

    def mySlot(self, ddict):
        if DEBUG:
            print("mySlot ", ddict['event'], ddict.keys())
        if ddict['event'] == "selectionMaskChanged":
            self.setStackSelectionMask(ddict['current'])
        elif ddict['event'] == "addImageClicked":
            self.addImage(ddict['image'], ddict['title'])
        elif ddict['event'] == "removeImageClicked":
            self.removeImage(ddict['title'])
        elif ddict['event'] == "replaceImageClicked":
            self.replaceImage(ddict['image'], ddict['title'])
        elif ddict['event'] == "resetSelection":
            self.setStackSelectionMask(None)
    
    #Methods implemented by the plugin
    def getMethods(self):
        if self._widget is None:
            return [self.__methodKeys[0]]
        else:
            return self.__methodKeys

    def getMethodToolTip(self, name):
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        return self.methodDict[name][2]

    def applyMethod(self, name):
        return self.methodDict[name][0]()

    # The specific part
    def calculate(self):
        if self.configurationWidget is None:
            self.configurationWidget = \
                            FastXRFLinearFitWindow.FastXRFLinearFitDialog()
        ret = self.configurationWidget.exec_()
        if ret:
            self._executeFunctionAndParameters()

    def _executeFunctionAndParameters(self):
        self._parameters = self.configurationWidget.getParameters()
        self._widget = None
        if self.fitInstance is None:
            self.fitInstance = FastXRFLinearFit.FastXRFLinearFit()
        #self._fitConfigurationFile="E:\DATA\COTTE\CH1777\G4-4720eV-NOWEIGHT-Constant-batch.cfg"
        
        if DEBUG:
            self.thread = CalculationThread.CalculationThread(\
                            calculation_method=self.actualCalculation)
            self.thread.result = self.actualCalculation()
            self.threadFinished()
        else:
            self.thread = CalculationThread.CalculationThread(\
                            calculation_method=self.actualCalculation)
            #qt.QObject.connect(self.thread,
            #             qt.SIGNAL('finished()'),
            #             self.threadFinished)
            self.thread.start()
            message = "Please wait. Calculation going on."
            CalculationThread.waitingMessageDialog(self.thread,
                                parent=self.configurationWidget,
                                message=message)
            while self.thread.isRunning():
                time.sleep(2)
            self.threadFinished()

    def actualCalculation(self):
        activeCurve = self.getActiveCurve()
        if activeCurve is not None:
            x, spectrum, legend, info = activeCurve
        else:
            x = None
            spectrum = None
        if not self.isStackFinite():
            # one has to check for NaNs in the used region(s)
            # for the time being only in the global image
            # spatial_mask = numpy.isfinite(image_data)
            spatial_mask = numpy.isfinite(self.getStackOriginalImage())
        stack = self.getStackDataObject()
        fitConfigurationFile = self._parameters['configuration']
        concentrations = self._parameters['concentrations']
        self.fitInstance.setFitConfigurationFile(fitConfigurationFile)
        weightPolicy = self._parameters['weight_policy']
        if weightPolicy:
            # force calculation of the unnormalized sum spectrum
            spectrum = None                
        if stack.x in [None, []]:
            x = None
        else:
            x = stack.x[0]
        result = self.fitInstance.fitMultipleSpectra(x=x,
                                                     y=stack,
                                                     weight=weightPolicy,
                                                     concentrations=concentrations,
                                                     ysum=spectrum)
        return result

    def threadFinished(self):
        result = self.thread.result
        self.thread = None
        if type(result) == type((1,)):
            #if we receive a tuple there was an error
            if len(result):
                if result[0] == "Exception":
                    # somehow this exception is not caught
                    raise Exception(result[1], result[2])
                    return
        if 'concentrations' in result:
            imageNames = result['names']
            images = numpy.concatenate((result['parameters'],
                                        result['concentrations']), axis=0)
        else:
            images = result['parameters']
            imageNames = result['names']
        nImages = images.shape[0]
        self._widget = StackPluginResultsWindow.StackPluginResultsWindow(\
                                        usetab=False)
        self._widget.buildAndConnectImageButtonBox()
        qt = StackPluginResultsWindow.qt
        qt.QObject.connect(self._widget,
                           qt.SIGNAL('MaskImageWidgetSignal'),
                           self.mySlot)

        self._widget.setStackPluginResults(images,
                                          image_names=imageNames)
        self._showWidget()

        # save to output directory
        parameters = self.configurationWidget.getParameters()
        outputDir = parameters["output_dir"]
        if outputDir in [None, ""]:
            if DEBUG:
                print("Nothing to be saved")
                return
        if parameters["file_root"] is None:
            fileRoot = ""
        else:
            fileRoot = parameters["file_root"].replace(" ","")
        if fileRoot in [None, ""]:
            fileRoot = "images"
        if not os.path.exists(outputDir):
            os.mkdir(outputDir)
        imagesDir = os.path.join(outputDir, "IMAGES")
        if not os.path.exists(imagesDir):
            os.mkdir(imagesDir)
        imageList = [None] * (nImages + len(result['uncertainties']))
        fileImageNames = [None] * (nImages + len(result['uncertainties']))
        j = 0
        for i in range(nImages):
            name = imageNames[i].replace(" ","-")
            fileImageNames[j] = name
            imageList[j] = images[i]
            j += 1
            if not imageNames[i].startswith("C("):
                # fitted parameter
                fileImageNames[j] = "s(%s)" % name
                imageList[j] = result['uncertainties'][i]
                j += 1
        fileName = os.path.join(imagesDir, fileRoot+".edf")
        ArraySave.save2DArrayListAsEDF(imageList, fileName,
                                       labels=fileImageNames)
        fileName = os.path.join(imagesDir, fileRoot+".csv")
        ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=True,
                                         labels=fileImageNames)                    

    def _showWidget(self):
        if self._widget is None:
            return
        #Show
        self._widget.show()
        self._widget.raise_()

        #update
        self.selectionMaskUpdated()

MENU_TEXT = "Fast XRF Stack Fitting"
def getStackPluginInstance(stackWindow, **kw):
    ob = FastXRFLinearFitStackPlugin(stackWindow)
    return ob