File: MedianFilterScanPlugin.py

package info (click to toggle)
pymca 4.7.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,352 kB
  • ctags: 9,570
  • sloc: python: 116,490; ansic: 18,322; cpp: 826; sh: 57; xml: 24; makefile: 19
file content (230 lines) | stat: -rw-r--r-- 8,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#/*##########################################################################
# Copyright (C) 2004-2013 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
import numpy

try:
    from PyMca import Plugin1DBase
except ImportError:
    print("WARNING:MedianFilterScanPlugin import from somewhere else")
    from . import Plugin1DBase

from PyMca import SpecfitFuns
from PyMca.PyMcaSciPy.signal.median import medfilt1d

class MedianFilterScanPlugin(Plugin1DBase.Plugin1DBase):
    def __init__(self, plotWindow, **kw):
        Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
        self.__randomization = True
        self.__methodKeys = []
        self.methodDict = {}
        text = "Use a random order instead\n"
        text += "of the plotting order."
        info = text
        icon = None
        function = self.toggleRandomization
        method = "Toggle Randomization OFF"
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
        method = "Toggle Randomization ON"
        text = "Use plotting order instead\n"
        text += "of a random order."
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
        function = self.applyMedianFilter
        for i in [3, 5, 7, 9]:
            info = "Replace curves by their %d-point median filter average" % i
            method = "Replace by %d-point median filter" % i
            self.methodDict[method] = [function,
                                       info,
                                       icon]
            self.__methodKeys.append(method)
        
    #Methods to be implemented by the plugin
    def getMethods(self, plottype=None):
        """
        A list with the NAMES  associated to the callable methods
        that are applicable to the specified plot.

        Plot type can be "SCAN", "MCA", None, ...        
        """
        if self.__randomization:
            return self.__methodKeys[0:1] +  self.__methodKeys[2:]
        else:
            return self.__methodKeys[1:]

    def getMethodToolTip(self, name):
        """
        Returns the help associated to the particular method name or None.
        """
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        """
        Returns the pixmap associated to the particular method name or None.
        """
        return None

    def applyMethod(self, name):
        """
        The plugin is asked to apply the method associated to name.
        """
        if name.startswith('Toggle'):
            return self.methodDict[name][0]()
        n = int(name.split('-')[0].split()[-1])
        return self.applyMedianFilter(width=n)

    def toggleRandomization(self):
        if self.__randomization:
            self.__randomization = False
        else:
            self.__randomization = True

    def applyMedianFilter(self, width=3):
        curves = self.getAllCurves()
        nCurves = len(curves)
        if nCurves < width:
            raise ValueError("At least %d curves needed" % width)
            return

        if self.__randomization:
            indices = numpy.random.permutation(nCurves)
        else:
            indices = range(nCurves)

        # get active curve            
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            activeCurve = curves[0]

        # apply between graph limits
        x0 = activeCurve[0][:]
        y0 = activeCurve[1][:]
        xmin, xmax =self.getGraphXLimits()
        idx = numpy.nonzero((x0 >= xmin) & (x0 <= xmax))[0]
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)

        #sort the values
        idx = numpy.argsort(x0, kind='mergesort')
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)

        #remove duplicates
        x0 = x0.ravel()
        idx = numpy.nonzero((x0[1:] > x0[:-1]))[0]
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)

        x0.shape = -1, 1
        nChannels = x0.shape[0]

        # built a couple of temporary array of spectra for handy access
        tmpArray = numpy.zeros((nChannels, nCurves), numpy.float)
        medianSpectra = numpy.zeros((nChannels, nCurves), numpy.float)
        i = 0
        for idx in indices:
            x, y, legend, info = curves[idx][0:4]
            #sort the values
            x = x[:]
            idx = numpy.argsort(x, kind='mergesort')
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)

            #take the portion of x between limits
            idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0]
            if not len(idx):
                # no overlap
                continue
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)

            #remove duplicates
            x = x.ravel()
            idx = numpy.nonzero((x[1:] > x[:-1]))[0]
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)
            x.shape = -1, 1
            if numpy.allclose(x, x0):
                # no need for interpolation
                pass
            else:
                # we have to interpolate
                x.shape = -1
                y.shape = -1
                xi = x0[:]
                y = SpecfitFuns.interpol([x], y, xi, y0.min())
            y.shape = -1
            tmpArray[:, i] = y
            i += 1

        # now perform the median filter
        for i in range(nChannels):
            medianSpectra[i, :] = medfilt1d(tmpArray[i,:],
                                            kernel_size=width)
        tmpArray = None
        # now get the final spectrum
        y = medianSpectra.sum(axis=1) / nCurves
        x0.shape = -1
        y.shape = x0.shape
        legend = "%d Median from %s to %s" % (width,
                                              curves[0][2],
                                              curves[-1][2])
        self.addCurve(x0,
                      y,
                      legend=legend,
                      info=None,
                      replot=True,
                      replace=True)

MENU_TEXT = "Median Filter Average"
def getPlugin1DInstance(plotWindow, **kw):
    ob = MedianFilterScanPlugin(plotWindow)
    return ob

if __name__ == "__main__":
    from PyMca import PyMcaQt as qt
    app = qt.QApplication([])
    from PyMca import Plot1D
    x = numpy.arange(100.)
    y = x * x
    plot = Plot1D.Plot1D()
    plot.addCurve(x, y, "dummy")
    plot.addCurve(x+100, -x*x)
    plugin = getPlugin1DInstance(plot)
    for method in plugin.getMethods():
        print(method, ":", plugin.getMethodToolTip(method))
    plugin.applyMethod(plugin.getMethods()[0])
    curves = plugin.getAllCurves()
    for curve in curves:
        print(curve[2])
    print("LIMITS = ", plugin.getGraphYLimits())
    #app = qt.QApplication()