File: SimpleMath.py

package info (click to toggle)
pymca 4.7.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,352 kB
  • ctags: 9,570
  • sloc: python: 116,490; ansic: 18,322; cpp: 826; sh: 57; xml: 24; makefile: 19
file content (187 lines) | stat: -rw-r--r-- 6,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
import numpy
try:
    from PyMca import SGModule
except ImportError:
    print("SimpleMath importing SGModule directly")
    import SGModule
    
class SimpleMath(object):
    def derivate(self,xdata,ydata, xlimits=None):
        x=numpy.array(xdata, copy=False, dtype=numpy.float)
        y=numpy.array(ydata, copy=False, dtype=numpy.float)
        if xlimits is not None:
            i1=numpy.nonzero((xdata>=xlimits[0])&\
                               (xdata<=xlimits[1]))[0]
            x=numpy.take(x,i1)
            y=numpy.take(y,i1)
        i1 = numpy.argsort(x)
        x=numpy.take(x,i1)
        y=numpy.take(y,i1)  
        deltax=x[1:] - x[:-1]
        i1=numpy.nonzero(abs(deltax)>0.0000001)[0]
        x=numpy.take(x, i1)
        y=numpy.take(y, i1)
        minDelta = deltax.min()
        xInter = numpy.arange(x[0]-minDelta,x[-1]+minDelta,minDelta)
        yInter = numpy.interp(xInter, x, y, left=y[0], right=y[-1])
        if len(yInter) > 499:
            npoints = 5
        else:
            npoints = 3
        degree = 1
        order = 1
        coeff = SGModule.calc_coeff(npoints, degree, order)
        N = int(numpy.size(coeff-1)/2)
        yInterPrime = numpy.convolve(yInter, coeff, mode='valid')/minDelta
        i1 = numpy.nonzero((x>=xInter[N+1]) & (x <= xInter[-N]))[0]
        x = numpy.take(x, i1)
        result = numpy.interp(x, xInter[(N+1):-N],
                              yInterPrime[1:],
                              left=yInterPrime[1],
                              right=yInterPrime[-1])
        return x, result

    def average(self, xarr, yarr, x=None):
        """
        :param xarr : List containing x values in 1-D numpy arrays
        :param yarr : List containing y Values in 1-D numpy arrays
        :param x: x values of the final average spectrum (or None)
        :return: Average spectrum. In case of invalid input (None, None) tuple is returned.

        From the spectra given in xarr & yarr, the method determines the overlap in
        the x-range. For spectra with unequal x-ranges, the method interpolates all
        spectra on the values given in x if provided or the first curve and averages them.
        """
        if (len(xarr) != len(yarr)) or\
           (len(xarr) == 0) or (len(yarr) == 0):
            if DEBUG:
                print('specAverage -- invalid input!')
                print('Array lengths do not match or are 0')
            return None, None 

        same = True
        if x == None:
            SUPPLIED = False
            x0 = xarr[0]
        else:
            SUPPLIED = True
            x0 = x
        for x in xarr:
            if len(x0) == len(x):
                if numpy.all(x0 == x):
                    pass
                else:
                    same = False
                    break
            else:
                same = False
                break

        xsort = []
        ysort = []
        for (x,y) in zip(xarr, yarr):
            if numpy.all(numpy.diff(x) > 0.):
                # All values sorted
                xsort.append(x)
                ysort.append(y)
            else:
                # Sort values
                mask = numpy.argsort(x)
                xsort.append(x.take(mask))
                ysort.append(y.take(mask))

        if SUPPLIED:
            xmin0 = x0.min()
            xmax0 = x0.max()
        else:
            xmin0 = xsort[0][0]
            xmax0 = xsort[0][-1]
        if (not same) or (not SUPPLIED):
            # Determine global xmin0 & xmax0
            for x in xsort:
                xmin = x.min()
                xmax = x.max()
                if xmin > xmin0:
                    xmin0 = xmin
                if xmax < xmax0:
                    xmax0 = xmax
            if xmax <= xmin:
                if DEBUG:
                    print('specAverage -- ')
                    print('No overlap between spectra!')
                return numpy.array([]), numpy.array([])

        # Clip xRange to maximal overlap in spectra
        mask = numpy.nonzero((x0 >= xmin0) & 
                             (x0 <= xmax0))[0]
        xnew = numpy.take(x0, mask)
        ynew = numpy.zeros(len(xnew))

        # Perform average
        for (x, y) in zip(xsort, ysort):
            if same:
                ynew += y  
            else:
                yinter = numpy.interp(xnew, x, y)
                ynew   += numpy.asarray(yinter)
        num = len(yarr)
        ynew /= num
        return xnew, ynew

    def smooth(self, *var, **kw):
        """
        smooth(self,*vars,**kw)
        Usage: self.smooth(y)
               self.smooth(y=y)
               self.smooth()
        """
        if 'y' in kw:
            ydata=kw['y']
        elif len(var) > 0:
            ydata=var[0]
        else:
            ydata=self.y
        f=[0.25,0.5,0.25]
        result=numpy.array(ydata, copy=False, dtype=numpy.float)
        if len(result) > 1:
            result[1:-1]=numpy.convolve(result,f,mode=0)
            result[0]=0.5*(result[0]+result[1])
            result[-1]=0.5*(result[-1]+result[-2])
        return result
        
if __name__ == "__main__":
    x = numpy.arange(100.)*0.25
    y = x*x + 2 * x
    a = SimpleMath()
    #print(a.average(x,y))
    xplot, yprime = a.derivate(x, y)
    print("Found:")
    for i in range(0,10):
        print("x = %f  y'= %f expected = %f" % (xplot[i], yprime[i], 2*xplot[i]+2))