1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
import numpy
try:
from PyMca import SGModule
except ImportError:
print("SimpleMath importing SGModule directly")
import SGModule
class SimpleMath(object):
def derivate(self,xdata,ydata, xlimits=None):
x=numpy.array(xdata, copy=False, dtype=numpy.float)
y=numpy.array(ydata, copy=False, dtype=numpy.float)
if xlimits is not None:
i1=numpy.nonzero((xdata>=xlimits[0])&\
(xdata<=xlimits[1]))[0]
x=numpy.take(x,i1)
y=numpy.take(y,i1)
i1 = numpy.argsort(x)
x=numpy.take(x,i1)
y=numpy.take(y,i1)
deltax=x[1:] - x[:-1]
i1=numpy.nonzero(abs(deltax)>0.0000001)[0]
x=numpy.take(x, i1)
y=numpy.take(y, i1)
minDelta = deltax.min()
xInter = numpy.arange(x[0]-minDelta,x[-1]+minDelta,minDelta)
yInter = numpy.interp(xInter, x, y, left=y[0], right=y[-1])
if len(yInter) > 499:
npoints = 5
else:
npoints = 3
degree = 1
order = 1
coeff = SGModule.calc_coeff(npoints, degree, order)
N = int(numpy.size(coeff-1)/2)
yInterPrime = numpy.convolve(yInter, coeff, mode='valid')/minDelta
i1 = numpy.nonzero((x>=xInter[N+1]) & (x <= xInter[-N]))[0]
x = numpy.take(x, i1)
result = numpy.interp(x, xInter[(N+1):-N],
yInterPrime[1:],
left=yInterPrime[1],
right=yInterPrime[-1])
return x, result
def average(self, xarr, yarr, x=None):
"""
:param xarr : List containing x values in 1-D numpy arrays
:param yarr : List containing y Values in 1-D numpy arrays
:param x: x values of the final average spectrum (or None)
:return: Average spectrum. In case of invalid input (None, None) tuple is returned.
From the spectra given in xarr & yarr, the method determines the overlap in
the x-range. For spectra with unequal x-ranges, the method interpolates all
spectra on the values given in x if provided or the first curve and averages them.
"""
if (len(xarr) != len(yarr)) or\
(len(xarr) == 0) or (len(yarr) == 0):
if DEBUG:
print('specAverage -- invalid input!')
print('Array lengths do not match or are 0')
return None, None
same = True
if x == None:
SUPPLIED = False
x0 = xarr[0]
else:
SUPPLIED = True
x0 = x
for x in xarr:
if len(x0) == len(x):
if numpy.all(x0 == x):
pass
else:
same = False
break
else:
same = False
break
xsort = []
ysort = []
for (x,y) in zip(xarr, yarr):
if numpy.all(numpy.diff(x) > 0.):
# All values sorted
xsort.append(x)
ysort.append(y)
else:
# Sort values
mask = numpy.argsort(x)
xsort.append(x.take(mask))
ysort.append(y.take(mask))
if SUPPLIED:
xmin0 = x0.min()
xmax0 = x0.max()
else:
xmin0 = xsort[0][0]
xmax0 = xsort[0][-1]
if (not same) or (not SUPPLIED):
# Determine global xmin0 & xmax0
for x in xsort:
xmin = x.min()
xmax = x.max()
if xmin > xmin0:
xmin0 = xmin
if xmax < xmax0:
xmax0 = xmax
if xmax <= xmin:
if DEBUG:
print('specAverage -- ')
print('No overlap between spectra!')
return numpy.array([]), numpy.array([])
# Clip xRange to maximal overlap in spectra
mask = numpy.nonzero((x0 >= xmin0) &
(x0 <= xmax0))[0]
xnew = numpy.take(x0, mask)
ynew = numpy.zeros(len(xnew))
# Perform average
for (x, y) in zip(xsort, ysort):
if same:
ynew += y
else:
yinter = numpy.interp(xnew, x, y)
ynew += numpy.asarray(yinter)
num = len(yarr)
ynew /= num
return xnew, ynew
def smooth(self, *var, **kw):
"""
smooth(self,*vars,**kw)
Usage: self.smooth(y)
self.smooth(y=y)
self.smooth()
"""
if 'y' in kw:
ydata=kw['y']
elif len(var) > 0:
ydata=var[0]
else:
ydata=self.y
f=[0.25,0.5,0.25]
result=numpy.array(ydata, copy=False, dtype=numpy.float)
if len(result) > 1:
result[1:-1]=numpy.convolve(result,f,mode=0)
result[0]=0.5*(result[0]+result[1])
result[-1]=0.5*(result[-1]+result[-2])
return result
if __name__ == "__main__":
x = numpy.arange(100.)*0.25
y = x*x + 2 * x
a = SimpleMath()
#print(a.average(x,y))
xplot, yprime = a.derivate(x, y)
print("Found:")
for i in range(0,10):
print("x = %f y'= %f expected = %f" % (xplot[i], yprime[i], 2*xplot[i]+2))
|