File: linalg.py

package info (click to toggle)
pymca 4.7.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,352 kB
  • ctags: 9,570
  • sloc: python: 116,490; ansic: 18,322; cpp: 826; sh: 57; xml: 24; makefile: 19
file content (452 lines) | stat: -rw-r--r-- 18,947 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#    Copyright (c) 2008-2014 V.A. Sole, ESRF
#
#   Permission to use and redistribute the source code or binary forms of
#   this software and its documentation, with or without modification is
#   hereby granted provided that the above notice of copyright, these
#   terms of use, and the disclaimer of warranty below appear in the
#   source code and documentation, and that none of the names of The
#   European Synchrotron Radiation Facility, or the authors
#   appear in advertising or endorsement of works derived from this
#   software without specific prior written permission from all parties.
#
#   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
#   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
#   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
#   IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
#   CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
#   TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#   SOFTWARE OR THE USE OR OTHER DEALINGS IN THIS SOFTWARE.
#
import numpy
__license__ = "BSD"
__author__ = "V.A. Sole - ESRF Data Analysis"
__doc__ = """
Similar function to the numpy lstsq function with a more rigorous uncertainty
treatement besides other optimizations in view of simultaneously solving several
equations of the form `a x = b`. Hopefully licensed under the same terms as
numpy itself (BSD license).
"""

# Linear Least Squares

def lstsq(a, b, rcond=None, sigma_b=None, weight=False,
          uncertainties=True, covariances=False, digested_output=False, svd=True,
          last_svd=None):
    """
    Return the least-squares solution to a linear matrix equation.

    Solves the equation `a x = b` by computing a vector `x` that
    minimizes the Euclidean 2-norm `|| b - a x ||^2`.  The equation may
    be under-, well-, or over- determined (i.e., the number of
    linearly independent rows of `a` can be less than, equal to, or
    greater than its number of linearly independent columns).  If `a`
    is square and of full rank, then `x` (but for round-off error) is
    the "exact" solution of the equation.

    Parameters
    ----------
    a : array_like, shape (M, N)
        "Model" matrix.
    b : array_like, shape (M,) or (M, K)
        Ordinate or "dependent variable" values. If `b` is two-dimensional,
        the least-squares solution is calculated for each of the `K` columns
        of `b`.
    sigma_b : uncertainties on the b values or None. If sigma_b has shape (M,) or (M, 1) and
              b has dimension (M, K), the uncertainty will be the same for all spectra.

    weight: 0 - No data weighting.
                If required, uncertainties will be calculated using either the
                supplied experimental uncertainties or an experimental
                uncertainty of 1 for each data point.
            1 - Statistical weight.
                Weighted fit using the supplied experimental uncertainties or the
                square root of the b values.

    svd: If not true, a simple matrix inversion will be used in case of weighting with unequal
         data weights. Ignored in any other cases.

    last_svd: Tuple containing U, s, V of the weighted model matrix or None. This is to
                    prevent recalculation on repeated fits.

    uncertainties: If False, no uncertainties will be calculated unless the covariance
                matrix is requested.

    covariances: If True, an array of covariance matrix/matrices will be returned.

    digested_output: If True, returns a dictionnary with explicit keys

    Returns
    -------
    x : ndarray, shape (N,) or (N, K)
        Least-squares solution.  The shape of `x` depends on the shape of
        `b`.

    uncertainties: ndarray, shape (N,) or (N, K)

    covariances: ndarray, shape (N, N) or (K, N, N)

    Examples
    --------
    Fit a line, ``y = mx + c``, through some noisy data-points:

    >>> x = np.array([0, 1, 2, 3])
    >>> y = np.array([-1, 0.2, 0.9, 2.1])

    By examining the coefficients, we see that the line should have a
    gradient of roughly 1 and cut the y-axis at, more or less, -1.

    We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
    and ``p = [[m], [c]]``.  Now use `lstsq` to solve for `p`:

    >>> A = np.vstack([x, np.ones(len(x))]).T
    >>> A
    array([[ 0.,  1.],
           [ 1.,  1.],
           [ 2.,  1.],
           [ 3.,  1.]])

    >>> m, c = np.linalg.lstsq(A, y)[0]
    >>> print m, c
    1.0 -0.95

    Plot the data along with the fitted line:

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'o', label='Original data', markersize=10)
    >>> plt.plot(x, m*x + c, 'r', label='Fitted line')
    >>> plt.legend()
    >>> plt.show()

    """
    a = numpy.array(a, dtype=numpy.float, copy=False)
    b = numpy.array(b, dtype=numpy.float, copy=False)
    a_shape = a.shape
    b_shape = b.shape
    original = b_shape
    if len(a_shape) != 2:
        raise ValueError("Model matrix must be two dimensional")
    if len(b_shape) == 1:
        b.shape = b_shape[0], 1
        b_shape = b.shape

    m  = a.shape[0]
    n  = a.shape[1]

    if m != b.shape[0]:
        raise ValueError('Incompatible dimensions between A and b matrices')

    fastest = False
    if weight:
        if sigma_b is not None:
            # experimental uncertainties provided these are the ones to use (if any)
            w = numpy.abs(numpy.array(sigma_b, dtype=numpy.float, copy=False))
            w = w + numpy.equal(w, 0)
            if w.size == b_shape[0]:
                # same uncertainty for every spectrum
                fastest = True
                w.shape = b.shape[0]
            else:
                w.shape = b_shape
        else:
            # "statistical" weight
            # we are asked to somehow weight the data but no uncertainties provided        
            # assume the uncertainties are the square root of the b values ...
            w = numpy.sqrt(numpy.abs(b))
            w = w + numpy.equal(w, 0)
    else:
        # we have an unweighted fit with no uncertainties
        # assume all the uncertainties equal to 1
        fastest = True
        w = numpy.ones(b.shape, numpy.float)
    if covariances:
        covarianceMatrix = numpy.zeros((b_shape[1], n, n), numpy.float)

    if not weight:
        # no weight is applied
        # get the SVD decomposition of the A matrix
        # One could avoid calculating U, s, V each time ...
        if last_svd is not None:
            U, s, V = last_svd
        else:
            U, s, V = numpy.linalg.svd(a, full_matrices=False)

        if rcond is None:
            s_cutoff = n * numpy.finfo(numpy.float).eps
        else:
            s_cutoff = rcond * s[0]
        s[s < s_cutoff] = numpy.inf
        
        # and get the parameters
        s.shape = -1
        dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
        parameters = numpy.dot(dummy, numpy.dot(U.T, b))
        parameters.shape = n, b.shape[1]
        if uncertainties or covariances:
            # get the uncertainties
            #(in the no-weight case without experimental uncertainties,
            # the uncertainties on the data points are ignored and the
            # uncertainty on the fitted parameters are independent of the input data!!!!)
            if fastest:
                # This is correct for all weights equal to 1
                _covariance = numpy.dot(dummy, dummy.T)
                sigmapar = numpy.sqrt(numpy.diag(_covariance))
                sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1]))
                sigmapar.shape = n, b_shape[1]
                if covariances:
                    covarianceMatrix[:] = _covariance
            elif covariances:
                # loop in order not to use potentially big matrices
                # but calculates the covariance matrices
                # It only makes sense if the covariance matrix is requested
                sigmapar = numpy.zeros((n, b_shape[1]), numpy.float)
                for k in range(b_shape[1]):
                    pseudoData = numpy.eye(b_shape[0]) * w[:, k]
                    tmpTerm = numpy.dot(dummy, numpy.dot(U.T, pseudoData))
                    _covariance[:, :] = numpy.dot(tmpTerm, tmpTerm.T)
                    sigmapar[:, k] = numpy.sqrt(numpy.diag(_covariance))
                    covarianceMatrix[k] = _covariance
            else:
                # loop in order not to use potentially big matrices
                # but not calculating the covariance matrix
                d = numpy.zeros(b.shape, numpy.float)
                sigmapar = numpy.zeros((n, b_shape[1]))
                for k in range(b_shape[0]):
                    d[k] = w[k]
                    sigmapar += (numpy.dot(dummy, numpy.dot(U.T, d))) ** 2
                    d[k] = 0.0
                sigmapar[:, :] = numpy.sqrt(sigmapar)
    elif fastest:
        # same weight for all spectra
        # it could be made by the calling routine, because it is equivalent to supplying a
        # different model and different independent values ...
        # That way one could avoid calculating U, s, V each time
        A = a / weight
        b = b / weight
        # get the SVD decomposition of the A matrix
        if last_svd is not None:
            U, s, V = last_svd
        else:
            U, s, V = numpy.linalg.svd(A, full_matrices=False)

        if rcond is None:
            s_cutoff = n * numpy.finfo(numpy.float).eps
        else:
            s_cutoff = rcond * s[0]
        s[s < s_cutoff] = numpy.inf
        
        # and get the parameters
        s.shape = -1
        dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
        parameters = numpy.dot(dummy, numpy.dot(U.T, b))
        parameters.shape = n, b.shape[1]
        if uncertainties or covariances:
            _covariance = numpy.dot(dummy, dummy.T)
            sigmapar = numpy.sqrt(numpy.diag(_covariance))
            sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1]))
            sigmapar.shape = n, b_shape[1]
            if covariances:
                covarianceMatrix[:] = _covariance
    else:
        parameters = numpy.zeros((n, b_shape[1]), numpy.float)
        sigmapar = numpy.zeros((n, b_shape[1]), numpy.float)
        if svd:
            # SVD - slower by a factor 2
            for i in range(b_shape[1]):
                tmpWeight = w[:, i:i+1]
                tmpData = b[:, i:i+1] / tmpWeight
                A = a / tmpWeight
                U, s, V = numpy.linalg.svd(A, full_matrices=False)
                if rcond is None:
                    s_cutoff = n * numpy.finfo(numpy.float).eps
                else:
                    s_cutoff = rcond * s[0]
                s[s < s_cutoff] = numpy.inf
                s.shape = -1
                dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
                parameters[:, i:i+1] = numpy.dot(dummy, numpy.dot(U.T, tmpData))
                if uncertainties or covariances:
                    # get the uncertainties
                    _covariance = numpy.dot(dummy, dummy.T)
                    sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
                    if covariances:
                        covarianceMatrix[i] = _covariance
        elif 1:
            # Pure matrix inversion (faster than SVD)
            # I do not seem to gain anything by re-using the storage
            #alpha = numpy.empty((n, n), numpy.float)
            #beta = numpy.empty((n, 1), numpy.float)
            for i in range(b_shape[1]):
                tmpWeight = w[:, i:i+1]
                A = a / tmpWeight
                tmpData =  b[:, i:i+1] / tmpWeight
                #numpy.dot(A.T, A, alpha)
                #numpy.dot(A.T, tmpData, beta)
                alpha = numpy.dot(A.T, A)
                beta = numpy.dot(A.T, tmpData)
                try:
                    _covariance = numpy.linalg.inv(alpha)
                except:
                    print("Exception")
                    print("Exception", sys.exc_info()[1])
                    continue
                parameters[:, i:i+1] = numpy.dot(_covariance, beta)
                if uncertainties:
                    sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
                if covariances:
                    covarianceMatrix[i] = covariance    
        else:
            # Matrix inversion with buffers does not improve
            bufferProduct = numpy.empty((n, n + 1), numpy.float)
            bufferAB = numpy.empty((b_shape[0], n+1), numpy.float)
            alpha = numpy.empty((n, n), numpy.float)
            for i in range(b_shape[1]):
                tmpWeight = w[:, i:i+1]
                A = a / tmpWeight
                tmpData =  b[:, i:i+1] / tmpWeight
                bufferAB [:, :n] = A
                bufferAB [:, n:n+1] = tmpData
                numpy.dot(A.T, bufferAB, bufferProduct)
                alpha[:, :]  = bufferProduct[:n, :n] 
                beta = bufferProduct[:,n]
                try:
                    _covariance = numpy.linalg.inv(alpha)
                except:
                    print("Exception")
                    print("Exception", sys.exc_inf())
                    continue
                parameters[:, i] = numpy.dot(_covariance, beta)
                if uncertainties:
                    sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
                if covariances:
                    covarianceMatrix[i] = covariance    
    if len(original) == 1:
        parameters.shape = -1
    if covariances:
        sigmapar.shape = parameters.shape
        if len(original) == 1:
            covarianceMatrix.shape = parameters.shape[0], parameters.shape[0] 
        result = [parameters, sigmapar, covarianceMatrix]
    elif uncertainties:
        sigmapar.shape = parameters.shape
        result = [parameters, sigmapar]
    else:
        result = [parameters]

    if digested_output:
        ddict = {}
        ddict['parameters'] = result[0]
        if len(result) > 1:
            ddict['uncertainties'] = result[1]
        elif covariances:
            ddict['covariances'] = result[2]
        if svd or fastest:
            ddict['svd'] = (U, s, V)
        return ddict
    else:
        return result
        

def getModelMatrixFromFunction(model_function, dummy_parameters, xdata, derivative=None):
    nPoints = xdata.size
    nParameters = len(dummy_parameters)
    modelMatrix = numpy.zeros((nPoints, nParameters) , numpy.float)
    pwork = dummy_parameters * 1
    for i in range(len(dummy_parameters)):
        fitparam = dummy_parameters[i]
        if derivative is None:
            delta = (pwork[i] + numpy.equal(fitparam, 0.0)) * 0.00001
            pwork[i] = fitparam + delta
            f1 = model_function(pwork, xdata)
            pwork[i] = fitparam - delta
            f2 = model_function(pwork, xdata)
            help0 = (f1-f2) / (2.0 * delta)
            pwork[i] = fitparam
        else:
            help0 = derivative(pwork, i, xdata)
        help0.shape = -1
        modelMatrix[:, i] = help0
    return modelMatrix

def modelFunction(p, x):
    return p[0] + (p[1] + p[2] * x) * x

def test1():
    x = numpy.arange(10000.)
    x.shape = -1, 1
    y = modelFunction([100., 50., 4.], x)
    A = getModelMatrixFromFunction(modelFunction, [0.0, 0.0, 0.0], x)
    parameters, uncertainties = lstsq(A, y, uncertainties=True, weight=False)
    print("Expected = 100., 50., 4.")
    print("Obtained = %f, %f, %f" % (parameters[0], parameters[1], parameters[2]))

def test2():
    import time
    try:
        from PyMca import Gefit
        GEFIT = True
        def f(p, x):
            return p[1] * x + p[0]
    except:
        GEFIT = False
    data = "0 0.8214 0.1 1 2.8471 0.3 2 4.852 0.5 3 7.5347 0.7 4 10.2464 0.9 5 10.2707 1.1 6 12.8011 1.3 7 13.7108 1.5 8 17.8501 1.7 9 15.3667 1.9 10 19.3933 2.1"
    data = numpy.array([float(x) for x in data.split()])
    data.shape = -1, 3

    # the model matrix for a straight line
    A = numpy.ones((data.shape[0],2), numpy.float)
    A[:, 1] = data[:, 0]
    print("Unweighted results:")
    t0 = time.time()
    y =  numpy.ones((data.shape[0], 1000), numpy.float) * data[:, 1:2]
    sigmay =  numpy.ones((data.shape[0], 1000), numpy.float) * data[:, 2:3]
    parameters, uncertainties = lstsq(A, y, #sigma_b=sigmay, #sigma_b=numpy.ones(sigmay.shape),
                                      uncertainties=True, weight=False)
    print("Elapsed = %f" % (time.time() - t0))
    print("Parameters    = %f, %f" % (parameters[0,100], parameters[1, 100]))
    print("Uncertainties = %f, %f" % (uncertainties[0,100], uncertainties[1, 100]))
    if GEFIT:
        t0 = time.time()
        for i in range(y.shape[1]):
            parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0],
                                                xdata=data[:,0],
                                                ydata=data[:,1],
                                                sigmadata=data[:,2],
                                                weightflag=0,
                                                linear=1)
        print("Elapsed = %f" % (time.time() - t0))
        print("Gefit results:")
        print("Parameters    = %f, %f" % (parameters[0], parameters[1]))
        print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1]))
                                                
    print("Mathematica results:")
    print("Parameters    = %f, %f" % (1.57043, 1.78945))
    print("Uncertainties = %f, %f" % (0.68363, 0.11555))

    print("Weighted results")
    t0 = time.time()
    #parameters, uncertainties = lstsq(A, data[:, 1], sigma_b=data[:,2],
    parameters, uncertainties = lstsq(A, y, sigma_b=numpy.outer(data[:,2], numpy.ones((1000, 1))),
                                      uncertainties=True, weight=True)
    print("Elapsed = %f" % (time.time() - t0))
    print("Parameters    = %f, %f" % (parameters[0, 100], parameters[1, 100]))
    print("Uncertainties = %f, %f" % (uncertainties[0, 100], uncertainties[1, 100]))    
    if GEFIT:
        parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0],
                                                xdata=data[:,0],
                                                ydata=data[:,1],
                                                sigmadata=data[:,2],
                                                weightflag=1,
                                                linear=1)
        print("Gefit results:")
        print("Parameters    = %f, %f" % (parameters[0], parameters[1]))
        print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1]))

    print("Mathematica results:")
    print("Parameters    = %f, %f" % (0.843827, 1.97982))
    print("Uncertainties = %f, %f" % (0.092449, 0.07262))

    return data

if __name__ == "__main__":
    test1()
    test2()