1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
# Copyright (c) 2008-2014 V.A. Sole, ESRF
#
# Permission to use and redistribute the source code or binary forms of
# this software and its documentation, with or without modification is
# hereby granted provided that the above notice of copyright, these
# terms of use, and the disclaimer of warranty below appear in the
# source code and documentation, and that none of the names of The
# European Synchrotron Radiation Facility, or the authors
# appear in advertising or endorsement of works derived from this
# software without specific prior written permission from all parties.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THIS SOFTWARE.
#
import numpy
__license__ = "BSD"
__author__ = "V.A. Sole - ESRF Data Analysis"
__doc__ = """
Similar function to the numpy lstsq function with a more rigorous uncertainty
treatement besides other optimizations in view of simultaneously solving several
equations of the form `a x = b`. Hopefully licensed under the same terms as
numpy itself (BSD license).
"""
# Linear Least Squares
def lstsq(a, b, rcond=None, sigma_b=None, weight=False,
uncertainties=True, covariances=False, digested_output=False, svd=True,
last_svd=None):
"""
Return the least-squares solution to a linear matrix equation.
Solves the equation `a x = b` by computing a vector `x` that
minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may
be under-, well-, or over- determined (i.e., the number of
linearly independent rows of `a` can be less than, equal to, or
greater than its number of linearly independent columns). If `a`
is square and of full rank, then `x` (but for round-off error) is
the "exact" solution of the equation.
Parameters
----------
a : array_like, shape (M, N)
"Model" matrix.
b : array_like, shape (M,) or (M, K)
Ordinate or "dependent variable" values. If `b` is two-dimensional,
the least-squares solution is calculated for each of the `K` columns
of `b`.
sigma_b : uncertainties on the b values or None. If sigma_b has shape (M,) or (M, 1) and
b has dimension (M, K), the uncertainty will be the same for all spectra.
weight: 0 - No data weighting.
If required, uncertainties will be calculated using either the
supplied experimental uncertainties or an experimental
uncertainty of 1 for each data point.
1 - Statistical weight.
Weighted fit using the supplied experimental uncertainties or the
square root of the b values.
svd: If not true, a simple matrix inversion will be used in case of weighting with unequal
data weights. Ignored in any other cases.
last_svd: Tuple containing U, s, V of the weighted model matrix or None. This is to
prevent recalculation on repeated fits.
uncertainties: If False, no uncertainties will be calculated unless the covariance
matrix is requested.
covariances: If True, an array of covariance matrix/matrices will be returned.
digested_output: If True, returns a dictionnary with explicit keys
Returns
-------
x : ndarray, shape (N,) or (N, K)
Least-squares solution. The shape of `x` depends on the shape of
`b`.
uncertainties: ndarray, shape (N,) or (N, K)
covariances: ndarray, shape (N, N) or (K, N, N)
Examples
--------
Fit a line, ``y = mx + c``, through some noisy data-points:
>>> x = np.array([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])
By examining the coefficients, we see that the line should have a
gradient of roughly 1 and cut the y-axis at, more or less, -1.
We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array([[ 0., 1.],
[ 1., 1.],
[ 2., 1.],
[ 3., 1.]])
>>> m, c = np.linalg.lstsq(A, y)[0]
>>> print m, c
1.0 -0.95
Plot the data along with the fitted line:
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> plt.legend()
>>> plt.show()
"""
a = numpy.array(a, dtype=numpy.float, copy=False)
b = numpy.array(b, dtype=numpy.float, copy=False)
a_shape = a.shape
b_shape = b.shape
original = b_shape
if len(a_shape) != 2:
raise ValueError("Model matrix must be two dimensional")
if len(b_shape) == 1:
b.shape = b_shape[0], 1
b_shape = b.shape
m = a.shape[0]
n = a.shape[1]
if m != b.shape[0]:
raise ValueError('Incompatible dimensions between A and b matrices')
fastest = False
if weight:
if sigma_b is not None:
# experimental uncertainties provided these are the ones to use (if any)
w = numpy.abs(numpy.array(sigma_b, dtype=numpy.float, copy=False))
w = w + numpy.equal(w, 0)
if w.size == b_shape[0]:
# same uncertainty for every spectrum
fastest = True
w.shape = b.shape[0]
else:
w.shape = b_shape
else:
# "statistical" weight
# we are asked to somehow weight the data but no uncertainties provided
# assume the uncertainties are the square root of the b values ...
w = numpy.sqrt(numpy.abs(b))
w = w + numpy.equal(w, 0)
else:
# we have an unweighted fit with no uncertainties
# assume all the uncertainties equal to 1
fastest = True
w = numpy.ones(b.shape, numpy.float)
if covariances:
covarianceMatrix = numpy.zeros((b_shape[1], n, n), numpy.float)
if not weight:
# no weight is applied
# get the SVD decomposition of the A matrix
# One could avoid calculating U, s, V each time ...
if last_svd is not None:
U, s, V = last_svd
else:
U, s, V = numpy.linalg.svd(a, full_matrices=False)
if rcond is None:
s_cutoff = n * numpy.finfo(numpy.float).eps
else:
s_cutoff = rcond * s[0]
s[s < s_cutoff] = numpy.inf
# and get the parameters
s.shape = -1
dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
parameters = numpy.dot(dummy, numpy.dot(U.T, b))
parameters.shape = n, b.shape[1]
if uncertainties or covariances:
# get the uncertainties
#(in the no-weight case without experimental uncertainties,
# the uncertainties on the data points are ignored and the
# uncertainty on the fitted parameters are independent of the input data!!!!)
if fastest:
# This is correct for all weights equal to 1
_covariance = numpy.dot(dummy, dummy.T)
sigmapar = numpy.sqrt(numpy.diag(_covariance))
sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1]))
sigmapar.shape = n, b_shape[1]
if covariances:
covarianceMatrix[:] = _covariance
elif covariances:
# loop in order not to use potentially big matrices
# but calculates the covariance matrices
# It only makes sense if the covariance matrix is requested
sigmapar = numpy.zeros((n, b_shape[1]), numpy.float)
for k in range(b_shape[1]):
pseudoData = numpy.eye(b_shape[0]) * w[:, k]
tmpTerm = numpy.dot(dummy, numpy.dot(U.T, pseudoData))
_covariance[:, :] = numpy.dot(tmpTerm, tmpTerm.T)
sigmapar[:, k] = numpy.sqrt(numpy.diag(_covariance))
covarianceMatrix[k] = _covariance
else:
# loop in order not to use potentially big matrices
# but not calculating the covariance matrix
d = numpy.zeros(b.shape, numpy.float)
sigmapar = numpy.zeros((n, b_shape[1]))
for k in range(b_shape[0]):
d[k] = w[k]
sigmapar += (numpy.dot(dummy, numpy.dot(U.T, d))) ** 2
d[k] = 0.0
sigmapar[:, :] = numpy.sqrt(sigmapar)
elif fastest:
# same weight for all spectra
# it could be made by the calling routine, because it is equivalent to supplying a
# different model and different independent values ...
# That way one could avoid calculating U, s, V each time
A = a / weight
b = b / weight
# get the SVD decomposition of the A matrix
if last_svd is not None:
U, s, V = last_svd
else:
U, s, V = numpy.linalg.svd(A, full_matrices=False)
if rcond is None:
s_cutoff = n * numpy.finfo(numpy.float).eps
else:
s_cutoff = rcond * s[0]
s[s < s_cutoff] = numpy.inf
# and get the parameters
s.shape = -1
dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
parameters = numpy.dot(dummy, numpy.dot(U.T, b))
parameters.shape = n, b.shape[1]
if uncertainties or covariances:
_covariance = numpy.dot(dummy, dummy.T)
sigmapar = numpy.sqrt(numpy.diag(_covariance))
sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1]))
sigmapar.shape = n, b_shape[1]
if covariances:
covarianceMatrix[:] = _covariance
else:
parameters = numpy.zeros((n, b_shape[1]), numpy.float)
sigmapar = numpy.zeros((n, b_shape[1]), numpy.float)
if svd:
# SVD - slower by a factor 2
for i in range(b_shape[1]):
tmpWeight = w[:, i:i+1]
tmpData = b[:, i:i+1] / tmpWeight
A = a / tmpWeight
U, s, V = numpy.linalg.svd(A, full_matrices=False)
if rcond is None:
s_cutoff = n * numpy.finfo(numpy.float).eps
else:
s_cutoff = rcond * s[0]
s[s < s_cutoff] = numpy.inf
s.shape = -1
dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
parameters[:, i:i+1] = numpy.dot(dummy, numpy.dot(U.T, tmpData))
if uncertainties or covariances:
# get the uncertainties
_covariance = numpy.dot(dummy, dummy.T)
sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
if covariances:
covarianceMatrix[i] = _covariance
elif 1:
# Pure matrix inversion (faster than SVD)
# I do not seem to gain anything by re-using the storage
#alpha = numpy.empty((n, n), numpy.float)
#beta = numpy.empty((n, 1), numpy.float)
for i in range(b_shape[1]):
tmpWeight = w[:, i:i+1]
A = a / tmpWeight
tmpData = b[:, i:i+1] / tmpWeight
#numpy.dot(A.T, A, alpha)
#numpy.dot(A.T, tmpData, beta)
alpha = numpy.dot(A.T, A)
beta = numpy.dot(A.T, tmpData)
try:
_covariance = numpy.linalg.inv(alpha)
except:
print("Exception")
print("Exception", sys.exc_info()[1])
continue
parameters[:, i:i+1] = numpy.dot(_covariance, beta)
if uncertainties:
sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
if covariances:
covarianceMatrix[i] = covariance
else:
# Matrix inversion with buffers does not improve
bufferProduct = numpy.empty((n, n + 1), numpy.float)
bufferAB = numpy.empty((b_shape[0], n+1), numpy.float)
alpha = numpy.empty((n, n), numpy.float)
for i in range(b_shape[1]):
tmpWeight = w[:, i:i+1]
A = a / tmpWeight
tmpData = b[:, i:i+1] / tmpWeight
bufferAB [:, :n] = A
bufferAB [:, n:n+1] = tmpData
numpy.dot(A.T, bufferAB, bufferProduct)
alpha[:, :] = bufferProduct[:n, :n]
beta = bufferProduct[:,n]
try:
_covariance = numpy.linalg.inv(alpha)
except:
print("Exception")
print("Exception", sys.exc_inf())
continue
parameters[:, i] = numpy.dot(_covariance, beta)
if uncertainties:
sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
if covariances:
covarianceMatrix[i] = covariance
if len(original) == 1:
parameters.shape = -1
if covariances:
sigmapar.shape = parameters.shape
if len(original) == 1:
covarianceMatrix.shape = parameters.shape[0], parameters.shape[0]
result = [parameters, sigmapar, covarianceMatrix]
elif uncertainties:
sigmapar.shape = parameters.shape
result = [parameters, sigmapar]
else:
result = [parameters]
if digested_output:
ddict = {}
ddict['parameters'] = result[0]
if len(result) > 1:
ddict['uncertainties'] = result[1]
elif covariances:
ddict['covariances'] = result[2]
if svd or fastest:
ddict['svd'] = (U, s, V)
return ddict
else:
return result
def getModelMatrixFromFunction(model_function, dummy_parameters, xdata, derivative=None):
nPoints = xdata.size
nParameters = len(dummy_parameters)
modelMatrix = numpy.zeros((nPoints, nParameters) , numpy.float)
pwork = dummy_parameters * 1
for i in range(len(dummy_parameters)):
fitparam = dummy_parameters[i]
if derivative is None:
delta = (pwork[i] + numpy.equal(fitparam, 0.0)) * 0.00001
pwork[i] = fitparam + delta
f1 = model_function(pwork, xdata)
pwork[i] = fitparam - delta
f2 = model_function(pwork, xdata)
help0 = (f1-f2) / (2.0 * delta)
pwork[i] = fitparam
else:
help0 = derivative(pwork, i, xdata)
help0.shape = -1
modelMatrix[:, i] = help0
return modelMatrix
def modelFunction(p, x):
return p[0] + (p[1] + p[2] * x) * x
def test1():
x = numpy.arange(10000.)
x.shape = -1, 1
y = modelFunction([100., 50., 4.], x)
A = getModelMatrixFromFunction(modelFunction, [0.0, 0.0, 0.0], x)
parameters, uncertainties = lstsq(A, y, uncertainties=True, weight=False)
print("Expected = 100., 50., 4.")
print("Obtained = %f, %f, %f" % (parameters[0], parameters[1], parameters[2]))
def test2():
import time
try:
from PyMca import Gefit
GEFIT = True
def f(p, x):
return p[1] * x + p[0]
except:
GEFIT = False
data = "0 0.8214 0.1 1 2.8471 0.3 2 4.852 0.5 3 7.5347 0.7 4 10.2464 0.9 5 10.2707 1.1 6 12.8011 1.3 7 13.7108 1.5 8 17.8501 1.7 9 15.3667 1.9 10 19.3933 2.1"
data = numpy.array([float(x) for x in data.split()])
data.shape = -1, 3
# the model matrix for a straight line
A = numpy.ones((data.shape[0],2), numpy.float)
A[:, 1] = data[:, 0]
print("Unweighted results:")
t0 = time.time()
y = numpy.ones((data.shape[0], 1000), numpy.float) * data[:, 1:2]
sigmay = numpy.ones((data.shape[0], 1000), numpy.float) * data[:, 2:3]
parameters, uncertainties = lstsq(A, y, #sigma_b=sigmay, #sigma_b=numpy.ones(sigmay.shape),
uncertainties=True, weight=False)
print("Elapsed = %f" % (time.time() - t0))
print("Parameters = %f, %f" % (parameters[0,100], parameters[1, 100]))
print("Uncertainties = %f, %f" % (uncertainties[0,100], uncertainties[1, 100]))
if GEFIT:
t0 = time.time()
for i in range(y.shape[1]):
parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0],
xdata=data[:,0],
ydata=data[:,1],
sigmadata=data[:,2],
weightflag=0,
linear=1)
print("Elapsed = %f" % (time.time() - t0))
print("Gefit results:")
print("Parameters = %f, %f" % (parameters[0], parameters[1]))
print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1]))
print("Mathematica results:")
print("Parameters = %f, %f" % (1.57043, 1.78945))
print("Uncertainties = %f, %f" % (0.68363, 0.11555))
print("Weighted results")
t0 = time.time()
#parameters, uncertainties = lstsq(A, data[:, 1], sigma_b=data[:,2],
parameters, uncertainties = lstsq(A, y, sigma_b=numpy.outer(data[:,2], numpy.ones((1000, 1))),
uncertainties=True, weight=True)
print("Elapsed = %f" % (time.time() - t0))
print("Parameters = %f, %f" % (parameters[0, 100], parameters[1, 100]))
print("Uncertainties = %f, %f" % (uncertainties[0, 100], uncertainties[1, 100]))
if GEFIT:
parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0],
xdata=data[:,0],
ydata=data[:,1],
sigmadata=data[:,2],
weightflag=1,
linear=1)
print("Gefit results:")
print("Parameters = %f, %f" % (parameters[0], parameters[1]))
print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1]))
print("Mathematica results:")
print("Parameters = %f, %f" % (0.843827, 1.97982))
print("Uncertainties = %f, %f" % (0.092449, 0.07262))
return data
if __name__ == "__main__":
test1()
test2()
|