1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#/*##########################################################################
# Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Common tools to deal with common graphics operations on images.
"""
import sys
import os
import numpy
from PyMca5 import spslut
COLORMAP_LIST = [spslut.GREYSCALE, spslut.REVERSEGREY, spslut.TEMP,
spslut.RED, spslut.GREEN, spslut.BLUE, spslut.MANY]
DEFAULT_COLORMAP_INDEX = 2
DEFAULT_COLORMAP_LOG_FLAG = False
def convertToRowAndColumn(x, y, shape, xScale=None, yScale=None, safe=True):
"""
Convert from plot coordinates to image row and column.
"""
if xScale is None:
c = x
else:
if x < xScale[0]:
x = xScale[0]
c = (x - xScale[0]) / xScale[1]
if yScale is None:
r = y
else:
if y < yScale[0]:
y = yScale[0]
r = ( y - yScale[0]) / yScale[1]
if safe:
c = min(int(c), shape[1] - 1)
r = min(int(r), shape[0] - 1)
else:
c = int(c)
r = int(r)
return r, c
def getPixmapFromData(ndarray, colormap=None, mask=None, colors=None):
"""
Calculate a colormap and apply a mask (given as a set of unsigned ints) to
it.
:param ndarray: Data values
:type ndarray: Numpy array
:param colormap: None or a list of seven parameters:
0. Colormap index. Positive integer
1. Autoscale flag
2. Minimum value to be mapped
3. Maximum value to be mapped
4. Minimum data value
5. Maximum data value
6. Flag to indicate mode (0 - linear, 1 - logarithmic)
:type colormap: list or None (default)
:param mask: Numpy array of indices to indicating mask levels
:type mask: Numpy nd array of indices or None (default)
:param colors: List containing the colors associated to the mask levels
:type colors: Numpy array of dimensions (N mask levels, 4) or None (default)
:returns: Numpy uint8 array of shape equal data.shape + [4]
"""
oldShape = list(ndarray.shape)
# deal with numpy masked arrays
if hasattr(ndarray, 'mask'):
data = ndarray.data[:]
else:
data = ndarray[:]
if len(oldShape) == 1:
data.shape = -1, 1
elif len(oldShape) != 2:
raise TypeError("Input array must be of dimension 2 got %d" % \
len(oldShape))
# deal with non finite data
finiteData = numpy.isfinite(data)
goodData = finiteData.min()
if goodData:
minData = data.min()
maxData = data.max()
else:
tmpData = data[finiteData]
if tmpData.size > 0:
minData = tmpData.min()
maxData = tmpData.max()
else:
minData = None
maxData = None
tmpData = None
# apply colormap
if colormap is None:
colormapName = COLORMAP_LIST[min(DEFAULT_COLORMAP_INDEX,
len(COLORMAP_LIST) - 1)]
if DEFAULT_COLORMAP_LOG_FLAG:
colormapScaling = spslut.log
else:
colormapScaling = spslut.LINEAR
if minData is None:
(pixmap, size, minmax)= spslut.transform(\
data,
(1,0),
(colormapScaling, 3.0),
"RGBX",
colormapName,
1,
(0, 1),
(0, 255), 1)
else:
(pixmap, size, minmax)= spslut.transform(\
data,
(1,0),
(colormapScaling,3.0),
"RGBX",
colormapName,
0,
(minData,maxData),
(0, 255), 1)
else:
if len(colormap) < 7:
print("Missing colormap log flag assuming linear")
colormap.append(spslut.LINEAR)
if goodData:
(pixmap, size, minmax)= spslut.transform(\
data,
(1,0),
(colormap[6],3.0),
"RGBX",
COLORMAP_LIST[int(str(colormap[0]))],
colormap[1],
(colormap[2],colormap[3]),
(0, 255), 1)
elif colormap[1]:
#autoscale
if minData is None:
colormapName = COLORMAP_LIST[min(DEFAULT_COLORMAP_INDEX,
len(COLORMAP_LIST) - 1)]
colormapScaling = DEFAULT_COLORMAP_LOG_FLAG
(pixmap, size, minmax)= spslut.transform(\
data,
(1,0),
(colormapScaling, 3.0),
"RGBX",
colormapName,
1,
(0, 1),
(0, 255), 1)
else:
(pixmap, size, minmax)= spslut.transform(\
data,
(1,0),
(colormap[6],3.0),
"RGBX",
COLORMAP_LIST[int(str(colormap[0]))],
0,
(minData, maxData),
(0,255), 1)
else:
(pixmap, size, minmax)= spslut.transform(\
data,
(1,0),
(colormap[6],3.0),
"RGBX",
COLORMAP_LIST[int(str(colormap[0]))],
colormap[1],
(colormap[2],colormap[3]),
(0,255), 1)
# make sure alpha is set
pixmap.shape = -1, 4
pixmap[:, 3] = 255
pixmap.shape = list(data.shape) + [4]
if not goodData:
pixmap[finiteData < 1] = 255
if mask is not None:
return applyMaskToImage(pixmap, mask, colors=colors, copy=False)
return pixmap
def applyMaskToImage(pixmap, mask=None, colors=None, copy=True):
"""
Calculate the resulting pixmap after applying a mask. Each value of the
mask indicates the color index to be used.
:param pixmap: Numpy array of RGBA values.
:type pixmap: Numpy ndarray.
:param mask: Numpy array of positive indices. Usually of type uint8.
:type mask: Numpy ndarray.
:param colors: Array of dimension (n_colors, 4) containing the RGBA colors.
:type colors: Numpy ndarray of uint8 values.
:param copy: Flag to indicate if a copy of th einput pixmap is to be made.
:type copy: Boolean, default True.
:returns: The resulting pixmap.
"""
if copy:
pixmap = pixmap.copy()
if mask is None:
return pixmap
maxValue = mask.max()
startIndex = mask.min()
if colors is None:
if maxValue == 1:
startIndex = 1
colors = numpy.zeros((2, 4), dtype=numpy.uint8)
colors[1, 3] = 255
else:
raise ValueError("Different mask levels require color list input")
oldShape = pixmap.shape
pixmap.shape = -1, 4
maskView = mask[:]
maskView.shape = -1,
blendFactor = 0.8
for i in range(startIndex, maxValue + 1):
idx = (maskView==i)
pixmap[idx, :] = pixmap[idx, :] * blendFactor + \
colors[i] * (1.0 - blendFactor)
pixmap.shape = oldShape
return pixmap
if __name__ == "__main__":
from PyMca5.PyMcaGui import PyMcaQt as qt
from PyMca5.PyMcaGui import PlotWidget
app = qt.QApplication([])
w = PlotWidget.PlotWidget()
data = numpy.arange(10000.).reshape(100, 100)
mask = numpy.zeros(data.shape, dtype=numpy.uint8)
mask[25:75, 25:75] = 1
image = getPixmapFromData(data, mask=mask)
w.addImage(image, mask=mask)
w.show()
app.exec_()
|