1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
# /*#########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Functions to extract a profile curve of a region of interest in an image.
"""
# import ######################################################################
import numpy
from PyMca5.PyMcaMath.fitting import SpecfitFuns
DEBUG = 0
# utils #######################################################################
def _clamp(value, min_, max_):
if value < min_:
return min_
elif value > max_:
return max_
else:
return value
# coordinate conversion #######################################################
def plotToImage(x, y, origin=(0, 0), scale=(1, 1), shape=None):
"""Convert a position from plot to image coordinates.
If shape is not None, return the position clipped to the image bounds.
:param float x: X coordinate in plot.
:param float y: Y coordinate in plot.
:param origin: Origin of the image in the plot.
:type origin: 2-tuple of float: (ox, oy).
:param scale: Scale of the image in the plot.
:type scale: 2-tuple of float: (sx, sy).
:param shape: Shape of the image or None to disable clipping.
:type shape: 2-tuple of int: (height, width) or None.
:return: Position in the image.
:rtype: 2-tuple of int: (row, col).
"""
col = int((x - origin[0]) / float(scale[0]))
row = int((y - origin[1]) / float(scale[1]))
if shape is not None:
col = _clamp(col, 0, shape[1] - 1)
row = _clamp(row, 0, shape[0] - 1)
return row, col
def imageToPlot(row, col, origin=(0., 0.), scale=(1., 1.)):
"""Convert a position from image to plot coordinates.
:param row: Row coordinate(s) in image.
:type row: int or numpy.ndarray
:param col: Column coordinate(s) in image.
:type col: int or numpy.ndarray
:param origin: Origin of the image in the plot.
:type origin: 2-tuple of float: (ox, oy).
:param scale: Scale of the image in the plot.
:type scale: 2-tuple of float: (sx, sy).
:return: Position in the image.
:rtype: 2-tuple of float or numpy.ndarray: (x, y).
"""
x = origin[0] + col * scale[0]
y = origin[1] + row * scale[1]
return x, y
# profiles ####################################################################
def getAlignedROIProfileCurve(image, roiCenter, roiWidth, roiRange, axis):
"""Sums of a rectangular region of interest (ROI) along a given axis.
Returned values and all parameters are in image coordinates.
This function might change the ROI so it remains within the image.
Thus, the bounds of the effective ROI and the effective roiRange are
returned along with the profile.
:param image: 2D data.
Warning: The sum is performed with the dtype of the provided
array!
:type image: numpy.ndarray with 2 dimensions.
:param int roiCenter: Center of the ROI in image coordinates along
the given axis.
:param int roiWidth: Width of the ROI in image pixels along
the given axis.
:param roiRange: [Start, End] positions of the ROI from which to take the
ROI in image coordinates along the other dimension.
Both start and end are included in the ROI if they are
in the image.
This range is clipped to the image.
:type roiRange: 2-tuple of int.
:param int axis: The axis along which to take the profile of the ROI.
0: Sum rows along columns.
1: Sum columns along rows.
:return: The profile and the effective ROI as a dict with the keys:
- 'profileCoordsRange': The range of profile coordinates
along the selected axis (2-tuple of int).
- 'profileValues': The sums of the ROI along the selected axis.
- 'roiPolygonCols': The column coordinates of the polygon of the
effective ROI.
- 'roiPolygonRows': The row coordinates of the polygon of the
effective ROI.
:rtype: dict
"""
assert axis in (0, 1)
if axis == 1:
# Transpose image to use same code for both dimensions.
image = image.transpose()
dim0Size, dim1Size = image.shape
roiCenter = int(roiCenter)
roiWidth = int(roiWidth)
# Keep range within image
startRange = _clamp(int(roiRange[0]), 0, dim1Size - 1)
endRange = _clamp(int(roiRange[1]), 0, dim1Size - 1)
stepRange = 1 if startRange <= endRange else -1
rangeSlice = slice(startRange, endRange + stepRange, stepRange)
# Get ROI extent in the dimension to sum
start = int(roiCenter + 0.5 - 0.5 * roiWidth)
end = int(roiCenter + 0.5 + 0.5 * roiWidth)
# Keep ROI within image and keep its width if possible
if start < 0:
start, end = 0, min(roiWidth, dim0Size)
elif end > dim0Size:
start, end = max(dim0Size - roiWidth, 0), dim0Size
if roiWidth <= 1:
profileValues = image[start, rangeSlice]
end = start + 1
else:
profileValues = image[start:end, rangeSlice].sum(axis=0)
# Get the ROI polygon
roiPolygonCols = numpy.array(
(startRange, endRange + stepRange, endRange + stepRange, startRange),
dtype=numpy.float)
roiPolygonRows = numpy.array((start, start, end, end),
dtype=numpy.float)
if axis == 1: # Image was transposed
roiPolygonCols, roiPolygonRows = roiPolygonRows, roiPolygonCols
return {'profileValues': profileValues,
'profileCoordsRange': (startRange, endRange),
'roiPolygonRows': roiPolygonRows,
'roiPolygonCols': roiPolygonCols}
def _getROILineProfileCurve(image, roiStart, roiEnd, roiWidth,
lineProjectionMode):
"""Returns the profile values and the polygon in the given ROI.
Works in image coordinates.
See :func:`getAlignedROIProfileCurve`.
"""
row0, col0 = roiStart
row1, col1 = roiEnd
deltaRow = abs(row1 - row0)
deltaCol = abs(col1 - col0)
if (lineProjectionMode == 'X' or
(lineProjectionMode == 'D' and deltaCol >= deltaRow)):
nPoints = deltaCol + 1
coordsRange = col0, col1
else: # 'Y' or ('D' and deltaCol < deltaRow)
nPoints = deltaRow + 1
coordsRange = row0, row1
if nPoints == 1: # all points are the same
if DEBUG:
print("START AND END POINT ARE THE SAME!!")
return None
# the coordinates of the reference points
x0 = numpy.arange(image.shape[0], dtype=numpy.float)
y0 = numpy.arange(image.shape[1], dtype=numpy.float)
if roiWidth < 1:
x = numpy.zeros((nPoints, 2), numpy.float)
x[:, 0] = numpy.linspace(row0, row1, nPoints)
x[:, 1] = numpy.linspace(col0, col1, nPoints)
# perform the interpolation
ydata = SpecfitFuns.interpol((x0, y0), image, x)
roiPolygonCols = numpy.array((col0, col1), dtype=numpy.float)
roiPolygonRows = numpy.array((row0, row1), dtype=numpy.float)
else:
# find m and b in the line y = mx + b
m = (row1 - row0) / float((col1 - col0))
# Not used: b = row0 - m * col0
alpha = numpy.arctan(m)
# imagine the following sequence
# - change origin to the first point
# - clock-wise rotation to bring the line on the x axis of a new system
# so that the points (col0, row0) and (col1, row1)
# become (x0, 0) (x1, 0).
# - counter clock-wise rotation to get the points (x0, -0.5 width),
# (x0, 0.5 width), (x1, 0.5 * width) and (x1, -0.5 * width) back to
# the original system.
# - restore the origin to (0, 0)
# - if those extremes are inside the image the selection is acceptable
cosalpha = numpy.cos(alpha)
sinalpha = numpy.sin(alpha)
newCol0 = 0.0
newCol1 = (col1 - col0) * cosalpha + (row1 - row0) * sinalpha
newRow0 = 0.0
newRow1 = - (col1 - col0) * sinalpha + (row1 - row0) * cosalpha
if DEBUG:
print("new X0 Y0 = %f, %f " % (newCol0, newRow0))
print("new X1 Y1 = %f, %f " % (newCol1, newRow1))
tmpX = numpy.linspace(newCol0, newCol1,
nPoints).astype(numpy.float)
rotMatrix = numpy.zeros((2, 2), dtype=numpy.float)
rotMatrix[0, 0] = cosalpha
rotMatrix[0, 1] = - sinalpha
rotMatrix[1, 0] = sinalpha
rotMatrix[1, 1] = cosalpha
if DEBUG:
# test if I recover the original points
testX = numpy.zeros((2, 1), numpy.float)
colRow = numpy.dot(rotMatrix, testX)
print("Recovered X0 = %f" % (colRow[0, 0] + col0))
print("Recovered Y0 = %f" % (colRow[1, 0] + row0))
print("It should be = %f, %f" % (col0, row0))
testX[0, 0] = newCol1
testX[1, 0] = newRow1
colRow = numpy.dot(rotMatrix, testX)
print("Recovered X1 = %f" % (colRow[0, 0] + col0))
print("Recovered Y1 = %f" % (colRow[1, 0] + row0))
print("It should be = %f, %f" % (col1, row1))
# find the drawing limits
testX = numpy.zeros((2, 4), numpy.float)
testX[0, 0] = newCol0
testX[0, 1] = newCol0
testX[0, 2] = newCol1
testX[0, 3] = newCol1
testX[1, 0] = newRow0 - 0.5 * roiWidth
testX[1, 1] = newRow0 + 0.5 * roiWidth
testX[1, 2] = newRow1 + 0.5 * roiWidth
testX[1, 3] = newRow1 - 0.5 * roiWidth
colRow = numpy.dot(rotMatrix, testX)
colLimits0 = colRow[0, :] + col0
rowLimits0 = colRow[1, :] + row0
for a in rowLimits0:
if (a >= image.shape[0]) or (a < 0):
print("outside row limits", a)
return None
for a in colLimits0:
if (a >= image.shape[1]) or (a < 0):
print("outside column limits", a)
return None
r0 = rowLimits0[0]
r1 = rowLimits0[1]
if r0 > r1:
print("r0 > r1", r0, r1)
raise ValueError("r0 > r1")
x = numpy.zeros((2, nPoints), numpy.float)
# oversampling solves noise introduction issues
oversampling = roiWidth + 1
oversampling = min(oversampling, 21)
ncontributors = roiWidth * oversampling
iterValues = numpy.linspace(-0.5 * roiWidth, 0.5 * roiWidth,
ncontributors)
tmpMatrix = numpy.zeros((nPoints * len(iterValues), 2),
dtype=numpy.float)
x[0, :] = tmpX
offset = 0
for i in iterValues:
x[1, :] = i
colRow = numpy.dot(rotMatrix, x)
colRow[0, :] += col0
colRow[1, :] += row0
# it is much faster to make one call to the interpolating
# routine than making many calls
tmpMatrix[offset:(offset + nPoints), 0] = colRow[1, :]
tmpMatrix[offset:(offset + nPoints), 1] = colRow[0, :]
offset += nPoints
ydata = SpecfitFuns.interpol((x0, y0), image, tmpMatrix)
ydata.shape = len(iterValues), nPoints
ydata = ydata.sum(axis=0)
# deal with the oversampling
ydata /= oversampling
roiPolygonCols, roiPolygonRows = colLimits0, rowLimits0
return {'profileValues': ydata,
'profileCoordsRange': coordsRange,
'roiPolygonCols': roiPolygonCols,
'roiPolygonRows': roiPolygonRows}
def getProfileCurve(image, roiStart, roiEnd, roiWidth=1,
origin=(0., 0.), scale=(1., 1.),
lineProjectionMode='D'):
"""Sums a region of interest (ROI) of an image along a given line.
Returned values and all parameters except roiWidth are in plot coordinates.
This function might change the ROI so it remains within the image.
Thus, the polygon of the effective ROI is returned along with the
profile.
The profile is always returned with increasing coordinates on the
projection axis, so roiStart and roiEnd are flipped if roiStart > roiEnd.
:param image: 2D data.
:type image: numpy.ndarray with 2 dimensions.
:param roiStart: Start point (x0, y0) of the ROI line in plot coordinates.
Start point is included in ROI.
:type roiStart: 2-tuple of float.
:param roiEnd: End point (x1, y1) of the ROI line in plot coordinates.
End point is included in ROI.
:type roiEnd: 2-tuple of float.
:param int roiWidth: Width of the ROI line in image pixels and NOT in
plot coordinates.
:param origin: (ox, oy) coordinates of the origin of the image
in plot coordinates.
:type origin: 2-tuple of float.
:param scale: (sx, sy) scale of the image in plot coordinates.
:type scale: 2-tuple of float.
:param str lineProjectionMode: The axis on which to do the profile, in:
- 'D': Use the axis with the longest
projection of the ROI line in pixels.
The profile coordinates are distance
along the profile line.
- 'X': Use the X axis.
The profile coordinates are in X axis
coordinates.
- 'Y': Use the Y axis.
The profile coordinates are in Y axis
coordinates.
This changes the sampling over the
ROI line and the returned coordinates of
the profile curve.
:return: None if cannot compute a profile curve, or
the profile and the effective ROI as a dict with the keys:
- 'profileCoords': The profile coordinates along the selected
axis if lineProjectionMode is in ('X', 'Y'),
or the distance in plot coordinates along
the line if lineProjectionMode is 'D'.
- 'profileValues': The sums of the ROI along the line.
- 'roiPolygonCols': The column coordinates of the polygon of the
effective ROI.
- 'roiPolygonRows': The row coordinates of the polygon of the
effective ROI.
- 'roiPolygonX': The x coordinates of the polygon of the
effective ROI in plot coordinates.
- 'roiPolygonY': The y coordinates of the polygon of the
effective ROI in plot coordinates.
:rtype: dict
"""
assert lineProjectionMode in ('D', 'X', 'Y')
if image is None:
return None
row0, col0 = plotToImage(roiStart[0], roiStart[1],
origin, scale, image.shape)
row1, col1 = plotToImage(roiEnd[0], roiEnd[1],
origin, scale, image.shape)
# Makes sure coords are increasing along the projection axis
if (lineProjectionMode == 'X' or
(lineProjectionMode == 'D' and
abs(col1 - col0) >= abs(row1 - row0))):
if col1 < col0:
# Invert end points to have increasing coords on X axis
row0, col0, row1, col1 = row1, col1, row0, col0
else: # i.e., 'Y' or ('D' and abs(col1 - col0) < abs(row1 - row0))
if row1 < row0:
# Invert end points to have increasing coords on Y axis
row0, col0, row1, col1 = row1, col1, row0, col0
if col0 == col1: # Vertical line
if lineProjectionMode not in ('D', 'Y'):
return None # Nothing to profile over 'X'
result = getAlignedROIProfileCurve(image,
roiCenter=col0,
roiRange=(row0, row1),
roiWidth=roiWidth,
axis=1)
elif row0 == row1: # Horizontal line
if lineProjectionMode not in ('D', 'X'):
return None # Nothing to profile over 'Y'
result = getAlignedROIProfileCurve(image,
roiCenter=row0,
roiRange=(col0, col1),
roiWidth=roiWidth,
axis=0)
else:
result = _getROILineProfileCurve(image,
(row0, col0), (row1, col1),
roiWidth, lineProjectionMode)
if result is None:
return None
values = result['profileValues']
# Generates profile coordinates
if lineProjectionMode == 'D':
# Profile coordinates are distances along the ROI line in plot unit
# get the abscisa in distance units
colRange = float(scale[0] * abs(col1 - col0))
rowRange = float(scale[1] * abs(row1 - row0))
deltaDistance = numpy.sqrt(
colRange * colRange + rowRange * rowRange) / (len(values) - 1.0)
coords = deltaDistance * numpy.arange(len(values), dtype=numpy.float)
else:
# Profile coordinates are returned in plot coords
# Build coords in image frame
start, end = result['profileCoordsRange']
step = 1 if start <= end else -1 # In case profile is inverted
coords = numpy.arange(start, end + step, step, dtype=numpy.float)
# Convert coords from image to plot
if lineProjectionMode == 'X':
if origin[0] != 0. or scale[0] != 1.:
coords = origin[0] + coords * scale[0]
elif lineProjectionMode == 'Y':
if origin[1] != 0. or scale[1] != 1.:
coords = origin[1] + coords * scale[1]
roiPolygonX, roiPolygonY = imageToPlot(result['roiPolygonRows'],
result['roiPolygonCols'],
origin, scale)
return {'profileValues': values,
'profileCoords': coords,
'startPoint': imageToPlot(row0, col0, origin, scale),
'endPoint': imageToPlot(row1, col1, origin, scale),
'roiPolygonCols': result['roiPolygonCols'],
'roiPolygonRows': result['roiPolygonRows'],
'roiPolygonX': roiPolygonX,
'roiPolygonY': roiPolygonY}
|