1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2016 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import sys
import os
import numpy
from . import ClassMcaTheory
from PyMca5.PyMcaCore import SpecFileLayer
from PyMca5.PyMcaCore import EdfFileLayer
from PyMca5.PyMcaIO import EdfFile
from PyMca5.PyMcaIO import LuciaMap
from PyMca5.PyMcaIO import AifiraMap
from PyMca5.PyMcaIO import EDFStack
from PyMca5.PyMcaIO import LispixMap
from PyMca5.PyMcaIO import NumpyStack
try:
import h5py
from PyMca5.PyMcaIO import HDF5Stack1D
HDF5SUPPORT = True
except ImportError:
HDF5SUPPORT = False
from PyMca5.PyMcaIO import ConfigDict
from . import ConcentrationsTool
class McaAdvancedFitBatch(object):
def __init__(self,initdict,filelist=None,outputdir=None,
roifit=None,roiwidth=None,
overwrite=1, filestep=1, mcastep=1,
concentrations=0, fitfiles=1, fitimages=1,
filebeginoffset = 0, fileendoffset=0,
mcaoffset=0, chunk = None,
selection=None, lock=None):
#for the time being the concentrations are bound to the .fit files
#that is not necessary, but it will be correctly implemented in
#future releases
self._lock = lock
self.fitFiles = fitfiles
self._concentrations = concentrations
if type(initdict) == type([]):
self.mcafit = ClassMcaTheory.McaTheory(initdict[mcaoffset])
self.__configList = initdict
self.__currentConfig = mcaoffset
else:
self.__configList = [initdict]
self.__currentConfig = 0
self.mcafit = ClassMcaTheory.McaTheory(initdict)
self.__concentrationsKeys = []
if self._concentrations:
self._tool = ConcentrationsTool.ConcentrationsTool()
self._toolConversion = ConcentrationsTool.ConcentrationsConversion()
self.setFileList(filelist)
self.setOutputDir(outputdir)
if fitimages:
self.fitImages= 1
self.__ncols = None
else:
self.fitImages = False
self.__ncols = None
self.fileStep = filestep
self.mcaStep = mcastep
self.useExistingFiles = not overwrite
self.savedImages=[]
if roifit is None:roifit = False
if roiwidth is None:roiwidth = 100.
self.pleaseBreak = 0
self.roiFit = roifit
self.roiWidth = roiwidth
self.fileBeginOffset = filebeginoffset
self.fileEndOffset = fileendoffset
self.mcaOffset = mcaoffset
self.chunk = chunk
self.selection = selection
def setFileList(self,filelist=None):
self._rootname = ""
if filelist is None:
filelist = []
if type(filelist) not in [type([]), type((2,))]:
filelist = [filelist]
self._filelist=filelist
if len(filelist):
if type(filelist[0]) is not numpy.ndarray:
self._rootname = self.getRootName(filelist)
def getRootName(self,filelist=None):
if filelist is None:filelist = self._filelist
first = os.path.basename(filelist[ 0])
last = os.path.basename(filelist[-1])
if first == last:return os.path.splitext(first)[0]
name1,ext1 = os.path.splitext(first)
name2,ext2 = os.path.splitext(last )
i0=0
for i in range(len(name1)):
if i >= len(name2):
break
elif name1[i] == name2[i]:
pass
else:
break
i0 = i
for i in range(i0,len(name1)):
if i >= len(name2):
break
elif name1[i] != name2[i]:
pass
else:
break
i1 = i
if i1 > 0:
delta=1
while (i1-delta):
if (last[(i1-delta)] in ['0', '1', '2',
'3', '4', '5',
'6', '7', '8',
'9']):
delta = delta + 1
else:
if delta > 1: delta = delta -1
break
rootname = name1[0:]+"_to_"+last[(i1-delta):]
else:
rootname = name1[0:]+"_to_"+last[0:]
return rootname
def setOutputDir(self,outputdir=None):
if outputdir is None:outputdir=os.getcwd()
self._outputdir = outputdir
def processList(self):
self.counter = 0
self.__row = self.fileBeginOffset - 1
self.__stack = None
for i in range(0+self.fileBeginOffset,
len(self._filelist)-self.fileEndOffset,
self.fileStep):
if not self.roiFit:
if len(self.__configList) > 1:
if i != 0:
self.mcafit = ClassMcaTheory.McaTheory(self.__configList[i])
self.__currentConfig = i
self.mcafit.enableOptimizedLinearFit()
inputfile = self._filelist[i]
self.__row += 1 #should be plus fileStep?
self.onNewFile(inputfile, self._filelist)
self.file = self.getFileHandle(inputfile)
if self.pleaseBreak: break
if self.__stack is None:
self.__stack = False
if hasattr(self.file, "info"):
if "SourceType" in self.file.info:
if self.file.info["SourceType"] in\
["EdfFileStack", "HDF5Stack1D"]:
self.__stack = True
if self.__stack:
self.__processStack()
if self._HDF5:
# The complete stack has been analyzed
break
else:
self.__processOneFile()
if self.counter:
if not self.roiFit:
if self.fitFiles:
self.listfile.write(']\n')
self.listfile.close()
if self.__ncols is not None:
if self.__ncols:self.saveImage()
self.onEnd()
def getFileHandle(self,inputfile):
try:
self._HDF5 = False
if type(inputfile) == numpy.ndarray:
try:
a = NumpyStack.NumpyStack(inputfile)
return a
except Exception as e:
# print e
raise
if HDF5SUPPORT:
if h5py.is_hdf5(inputfile):
self._HDF5 = True
try:
return HDF5Stack1D.HDF5Stack1D(self._filelist,
self.selection)
except:
raise
ffile = self.__tryEdf(inputfile)
if ffile is None:
ffile = self.__tryLucia(inputfile)
if ffile is None:
if inputfile[-3:] == "DAT":
ffile = self.__tryAifira(inputfile)
if ffile is None:
if LispixMap.isLispixMapFile(inputfile):
ffile = LispixMap.LispixMap(inputfile, native=False)
if (ffile is None):
del ffile
ffile = SpecFileLayer.SpecFileLayer()
ffile.SetSource(inputfile)
return ffile
except:
raise IOError("I do not know what to do with file %s" % inputfile)
def onNewFile(self,ffile, filelist):
self.__log(ffile)
def onImage(self,image,imagelist):
pass
def onMca(self,mca,nmca, filename=None, key=None, info=None):
pass
def onEnd(self):
pass
def __log(self,text):
print(text)
def __tryEdf(self,inputfile):
try:
ffile = EdfFileLayer.EdfFileLayer(fastedf=0)
ffile.SetSource(inputfile)
fileinfo = ffile.GetSourceInfo()
if fileinfo['KeyList'] == []:
ffile=None
elif len(self._filelist) == 1:
#Is it a Diamond stack?
if len(fileinfo['KeyList']) > 1:
info, data = ffile.LoadSource(fileinfo['KeyList'][0])
shape = data.shape
if len(shape) == 2:
if min(shape) == 1:
#It is a Diamond Stack
ffile=EDFStack.EDFStack(inputfile)
return ffile
except:
return None
def __tryLucia(self, inputfile):
f = open(inputfile)
line = f.readline()
f.close()
ffile = None
if line.startswith('#\tDate:'):
ffile = LuciaMap.LuciaMap(inputfile)
return ffile
def __tryAifira(self, inputfile):
if sys.platform == "win32":
f = open(inputfile,"rb")
else:
f = open(inputfile,"r")
line = f.read(3)
f.close()
if '#' in line:
#specfile
return None
ffile = None
try:
ffile = AifiraMap.AifiraMap(inputfile)
except:
ffile = None
return ffile
def __processStack(self):
stack = self.file
info = stack.info
data = stack.data
xStack = None
if hasattr(stack, "x"):
if stack.x not in [None, []]:
if type(stack.x) == type([]):
xStack = stack.x[0]
else:
print("THIS SHOULD NOT BE USED")
xStack = stack.x
nimages = stack.info['Dim_1']
self.__nrows = nimages
numberofmca = stack.info['Dim_2']
keylist = ["1.1"] * nimages
for i in range(nimages):
keylist[i] = "1.%04d" % i
for i in range(nimages):
if self.pleaseBreak: break
self.onImage(keylist[i], keylist)
self.__ncols = numberofmca
colsToIter = range(0+self.mcaOffset,
numberofmca,
self.mcaStep)
self.__row = i
self.__col = -1
try:
cache_data = data[i, :, :]
except:
print("Error reading dataset row %d" % i)
print(sys.exc_info())
print("Batch resumed")
continue
for mca in colsToIter:
if self.pleaseBreak: break
self.__col = mca
mcadata = cache_data[mca, :]
y0 = numpy.array(mcadata)
if xStack is None:
if 'MCA start ch' in info:
xmin = float(info['MCA start ch'])
else:
xmin = 0.0
x = numpy.arange(len(y0))*1.0 + xmin
else:
x = xStack
#key = "%s.%s.%02d.%02d" % (scan,order,row,col)
key = "%s.%04d" % (keylist[i], mca)
#I only process the first file of the stack?
filename = os.path.basename(info['SourceName'][0])
infoDict = {}
infoDict['SourceName'] = info['SourceName']
infoDict['Key'] = key
self.__processOneMca(x,y0,filename,key,info=infoDict)
self.onMca(mca, numberofmca, filename=filename,
key=key,
info=infoDict)
def __processOneFile(self):
ffile=self.file
fileinfo = ffile.GetSourceInfo()
if 1:
i = 0
for scankey in fileinfo['KeyList']:
if self.pleaseBreak: break
self.onImage(scankey, fileinfo['KeyList'])
scan,order = scankey.split(".")
info,data = ffile.LoadSource(scankey)
if info['SourceType'] == "EdfFile":
nrows = int(info['Dim_1'])
ncols = int(info['Dim_2'])
numberofmca = ncols
self.__ncols = len(range(0+self.mcaOffset,numberofmca,self.mcaStep))
self.__col = -1
for mca_index in range(self.__ncols):
mca = 0 + self.mcaOffset + mca_index * self.mcaStep
if self.pleaseBreak: break
self.__col += 1
mcadata = data[mca,:]
if 'MCA start ch' in info:
xmin = float(info['MCA start ch'])
else:
xmin = 0.0
key = "%s.%s.%04d" % (scan,order,mca)
y0 = numpy.array(mcadata)
x = numpy.arange(len(y0))*1.0 + xmin
filename = os.path.basename(info['SourceName'])
infoDict = {}
infoDict['SourceName'] = info['SourceName']
infoDict['Key'] = key
infoDict['McaLiveTime'] = info.get('McaLiveTime', None)
self.__processOneMca(x,y0,filename,key,info=infoDict)
self.onMca(mca, numberofmca, filename=filename,
key=key,
info=infoDict)
else:
if info['NbMca'] > 0:
self.fitImages = True
numberofmca = info['NbMca'] * 1
self.__ncols = len(range(0+self.mcaOffset,
numberofmca,self.mcaStep))
numberOfMcaToTakeFromScan = self.__ncols * 1
self.__col = -1
scan_key = "%s.%s" % (scan,order)
scan_obj= ffile.Source.select(scan_key)
#I assume always same number of detectors and
#same offset for each detector otherways I would
#slow down everything to deal with not very common
#situations
#if self.__row == 0:
if self.counter == 0:
self.__chann0List = numpy.zeros(info['NbMcaDet'])
chan0list = scan_obj.header('@CHANN')
if len(chan0list):
for i in range(info['NbMcaDet']):
self.__chann0List[i] = int(chan0list[i].split()[2])
# The calculation of self.__ncols is wrong if there are
# several scans containing MCAs. One needs to multiply by
# the number of scans assuming all of them contain MCAs.
# We have to assume the same structure in all files.
# Only in the case of "pseudo" two scan files where only
# the second scan contains MCAs we do not multiply.
if (len(fileinfo['KeyList']) == 2) and (fileinfo['KeyList'].index(scan_key) == 1):
# leave self.__ncols untouched
self.__ncolsModified = False
else:
# multiply by the number of scans
self.__ncols *= len(fileinfo['KeyList'])
self.__ncolsModified = True
#import time
for mca_index in range(numberOfMcaToTakeFromScan):
i = 0 + self.mcaOffset + mca_index * self.mcaStep
#e0 = time.time()
if self.pleaseBreak: break
if self.__ncolsModified:
self.__col = i + \
fileinfo['KeyList'].index(scan_key) * \
numberofmca
else:
self.__col += 1
point = int(i/info['NbMcaDet']) + 1
mca = (i % info['NbMcaDet']) + 1
key = "%s.%s.%05d.%d" % (scan,order,point,mca)
autotime = self.mcafit.config["concentrations"].get(\
"useautotime", False)
if autotime:
#slow info reading methods needed to access time
mcainfo,mcadata = ffile.LoadSource(key)
info['McaLiveTime'] = mcainfo.get('McaLiveTime',
None)
else:
mcadata = scan_obj.mca(i+1)
y0 = numpy.array(mcadata)
x = numpy.arange(len(y0))*1.0 + \
self.__chann0List[mca-1]
filename = os.path.basename(info['SourceName'])
infoDict = {}
infoDict['SourceName'] = info['SourceName']
infoDict['Key'] = key
infoDict['McaLiveTime'] = info.get('McaLiveTime',
None)
self.__processOneMca(x,y0,filename,key,info=infoDict)
self.onMca(i, info['NbMca'],filename=filename,
key=key,
info=infoDict)
#print "remaining = ",(time.time()-e0) * (info['NbMca'] - i)
def __getFitFile(self, filename, key):
fitdir = self.os_path_join(self._outputdir,"FIT")
fitdir = self.os_path_join(fitdir,filename+"_FITDIR")
outfile = filename +"_"+key+".fit"
outfile = self.os_path_join(fitdir, outfile)
return outfile
def os_path_join(self, a, b):
try:
outfile=os.path.join(a, b)
except UnicodeDecodeError:
toBeDone = True
if sys.platform == 'win32':
try:
outfile=os.path.join(a.decode('mbcs'),
b.decode('mbcs'))
toBeDone = False
except UnicodeDecodeError:
pass
if toBeDone:
try:
outfile = os.path.join(a.decode('utf-8'),
a.decode('utf-8'))
except UnicodeDecodeError:
outfile = os.path.join(a.decode('latin-1'),
a.decode('latin-1'))
return outfile
def __processOneMca(self,x,y,filename,key,info=None):
self._concentrationsAsAscii = ""
if not self.roiFit:
result = None
concentrationsdone = 0
concentrations = None
outfile=self.os_path_join(self._outputdir, filename)
fitfile = self.__getFitFile(filename,key)
if self.chunk is not None:
con_extension = "_%06d_partial_concentrations.txt" % self.chunk
else:
con_extension = "_concentrations.txt"
self._concentrationsFile = self.os_path_join(self._outputdir,
self._rootname+ con_extension)
# self._rootname+"_concentrationsNEW.txt")
if self.counter == 0:
if os.path.exists(self._concentrationsFile):
try:
os.remove(self._concentrationsFile)
except:
print("I could not delete existing concentrations file %s" %\
self._concentrationsFile)
#print "self._concentrationsFile", self._concentrationsFile
if self.useExistingFiles and os.path.exists(fitfile):
useExistingResult = 1
try:
dict = ConfigDict.ConfigDict()
dict.read(fitfile)
result = dict['result']
if 'concentrations' in dict:
concentrationsdone = 1
except:
print("Error trying to use result file %s" % fitfile)
print("Please, consider deleting it.")
print(sys.exc_info())
return
else:
useExistingResult = 0
try:
#I make sure I take the fit limits configuration
self.mcafit.config['fit']['use_limit'] = 1
self.mcafit.setData(x,y, time=info.get("McaLiveTime", None))
except:
print("Error entering data of file with output = %s\n%s" %\
(filename, sys.exc_info()[1]))
# make sure the configuration is restored
if self.mcafit.config['fit'].get("strategyflag", False):
config = self.__configList[self.__currentConfig]
print("Restoring fitconfiguration")
self.mcafit = ClassMcaTheory.McaTheory(config)
self.mcafit.enableOptimizedLinearFit()
return
try:
self.mcafit.estimate()
if self.fitFiles:
fitresult, result = self.mcafit.startfit(digest=1)
elif self._concentrations and (self.mcafit._fluoRates is None):
fitresult, result = self.mcafit.startfit(digest=1)
elif self._concentrations:
fitresult = self.mcafit.startfit(digest=0)
try:
fitresult0 = {}
fitresult0['fitresult'] = fitresult
fitresult0['result'] = self.mcafit.imagingDigestResult()
fitresult0['result']['config'] = self.mcafit.config
conf = self.mcafit.configure()
tconf = self._tool.configure()
if 'concentrations' in conf:
tconf.update(conf['concentrations'])
else:
#what to do?
pass
concentrations = self._tool.processFitResult(config=tconf,
fitresult=fitresult0,
elementsfrommatrix=False,
fluorates = self.mcafit._fluoRates)
except:
print("error in concentrations")
print(sys.exc_info()[0:-1])
concentrationsdone = True
else:
#just images
fitresult = self.mcafit.startfit(digest=0)
except:
print("Error fitting file with output = %s: %s)" %\
(filename, sys.exc_info()[1]))
if self.mcafit.config['fit'].get("strategyflag", False):
config = self.__configList[self.__currentConfig]
print("Restoring fitconfiguration")
self.mcafit = ClassMcaTheory.McaTheory(config)
self.mcafit.enableOptimizedLinearFit()
return
if self._concentrations:
if concentrationsdone == 0:
if not ('concentrations' in result):
if useExistingResult:
fitresult0={}
fitresult0['result'] = result
conf = result['config']
else:
fitresult0={}
if result is None:
result = self.mcafit.digestresult()
fitresult0['result'] = result
fitresult0['fitresult'] = fitresult
conf = self.mcafit.configure()
tconf = self._tool.configure()
if 'concentrations' in conf:
tconf.update(conf['concentrations'])
else:
pass
#print "Concentrations not calculated"
#print "Is your fit configuration file correct?"
#return
try:
concentrations = self._tool.processFitResult(config=tconf,
fitresult=fitresult0,
elementsfrommatrix=False)
except:
print("error in concentrations")
print(sys.exc_info()[0:-1])
#return
self._concentrationsAsAscii=self._toolConversion.getConcentrationsAsAscii(concentrations)
if len(self._concentrationsAsAscii) > 1:
text = ""
text += "SOURCE: "+ filename +"\n"
text += "KEY: "+key+"\n"
text += self._concentrationsAsAscii + "\n"
f=open(self._concentrationsFile,"a")
f.write(text)
f.close()
#output options
# .FIT files
if self.fitFiles:
fitdir = self.os_path_join(self._outputdir,"FIT")
if not os.path.exists(fitdir):
try:
os.mkdir(fitdir)
except:
print("I could not create directory %s" % fitdir)
return
fitdir = self.os_path_join(fitdir,filename+"_FITDIR")
if not os.path.exists(fitdir):
try:
os.mkdir(fitdir)
except:
print("I could not create directory %s" % fitdir)
return
if not os.path.isdir(fitdir):
print("%s does not seem to be a valid directory" % fitdir)
else:
outfile = filename +"_"+key+".fit"
outfile = self.os_path_join(fitdir, outfile)
if not useExistingResult:
result = self.mcafit.digestresult(outfile=outfile,
info=info)
if concentrations is not None:
try:
f=ConfigDict.ConfigDict()
f.read(outfile)
f['concentrations'] = concentrations
try:
os.remove(outfile)
except:
print("error deleting fit file")
f.write(outfile)
except:
print("Error writing concentrations to fit file")
print(sys.exc_info())
#python like output list
if not self.counter:
name = os.path.splitext(self._rootname)[0]+"_fitfilelist.py"
name = self.os_path_join(self._outputdir,name)
try:
os.remove(name)
except:
pass
self.listfile=open(name,"w+")
self.listfile.write("fitfilelist = [")
self.listfile.write('\n'+outfile)
else:
self.listfile.write(',\n'+outfile)
else:
if not useExistingResult:
if 0:
#this is very slow and not needed just for imaging
if result is None:
result = self.mcafit.digestresult()
else:
if result is None:
result = self.mcafit.imagingDigestResult()
#IMAGES
if self.fitImages:
#this only works with EDF
if self.__ncols is not None:
if not self.counter:
imgdir = self.os_path_join(self._outputdir,"IMAGES")
if not os.path.exists(imgdir):
try:
os.mkdir(imgdir)
except:
print("I could not create directory %s" %\
imgdir)
return
elif not os.path.isdir(imgdir):
print("%s does not seem to be a valid directory" %\
imgdir)
self.imgDir = imgdir
self.__peaks = []
self.__images = {}
self.__sigmas = {}
if not self.__stack:
self.__nrows = len(range(0, len(self._filelist), self.fileStep))
for group in result['groups']:
self.__peaks.append(group)
self.__images[group]= numpy.zeros((self.__nrows,
self.__ncols),
numpy.float)
self.__sigmas[group]= numpy.zeros((self.__nrows,
self.__ncols),
numpy.float)
self.__images['chisq'] = numpy.zeros((self.__nrows,
self.__ncols),
numpy.float) - 1.
if self._concentrations:
layerlist = concentrations['layerlist']
if 'mmolar' in concentrations:
self.__conLabel = " mM"
self.__conKey = "mmolar"
else:
self.__conLabel = " mass fraction"
self.__conKey = "mass fraction"
for group in concentrations['groups']:
key = group+self.__conLabel
self.__concentrationsKeys.append(key)
self.__images[key] = numpy.zeros((self.__nrows,
self.__ncols),
numpy.float)
if len(layerlist) > 1:
for layer in layerlist:
key = group+" "+layer
self.__concentrationsKeys.append(key)
self.__images[key] = numpy.zeros((self.__nrows,
self.__ncols),
numpy.float)
for peak in self.__peaks:
try:
self.__images[peak][self.__row, self.__col] = result[peak]['fitarea']
self.__sigmas[peak][self.__row, self.__col] = result[peak]['sigmaarea']
except:
pass
if self._concentrations:
layerlist = concentrations['layerlist']
for group in concentrations['groups']:
self.__images[group+self.__conLabel][self.__row, self.__col] = \
concentrations[self.__conKey][group]
if len(layerlist) > 1:
for layer in layerlist:
self.__images[group+" "+layer] [self.__row, self.__col] = \
concentrations[layer][self.__conKey][group]
try:
self.__images['chisq'][self.__row, self.__col] = result['chisq']
except:
print("Error on chisq row %d col %d" %\
(self.__row, self.__col))
print("File = %s\n" % filename)
pass
else:
dict=self.mcafit.roifit(x,y,width=self.roiWidth)
#this only works with EDF
if self.__ncols is not None:
if not self.counter:
imgdir = self.os_path_join(self._outputdir,"IMAGES")
if not os.path.exists(imgdir):
try:
os.mkdir(imgdir)
except:
print("I could not create directory %s" %\
imgdir)
return
elif not os.path.isdir(imgdir):
print("%s does not seem to be a valid directory" %\
imgdir)
self.imgDir = imgdir
self.__ROIpeaks = []
self._ROIimages = {}
if not self.__stack:
self.__nrows = len(self._filelist)
for group in dict.keys():
self.__ROIpeaks.append(group)
self._ROIimages[group]={}
for roi in dict[group].keys():
self._ROIimages[group][roi]=numpy.zeros((self.__nrows,
self.__ncols),
numpy.float)
if not hasattr(self, "_ROIimages"):
print("ROI fitting only supported on EDF")
for group in self.__ROIpeaks:
for roi in self._ROIimages[group].keys():
try:
self._ROIimages[group][roi][self.__row, self.__col] = dict[group][roi]
except:
print("error on (row,col) = %d,%d" %\
(self.__row, self.__col))
print("File = %s" % filename)
pass
#update counter
self.counter += 1
def saveImage(self,ffile=None):
self.savedImages=[]
if ffile is None:
ffile = os.path.splitext(self._rootname)[0]
ffile = self.os_path_join(self.imgDir,ffile)
if not self.roiFit:
if (self.fileStep > 1) or (self.mcaStep > 1):
trailing = "_filestep_%02d_mcastep_%02d" % ( self.fileStep,
self.mcaStep )
else:
trailing = ""
#speclabel = "#L row column"
speclabel = "row column"
if self.chunk is None:
suffix = ".edf"
else:
suffix = "_%06d_partial.edf" % self.chunk
iterationList = self.__peaks * 1
iterationList += ['chisq']
if self._concentrations:
iterationList += self.__concentrationsKeys
for peak in iterationList:
if peak in self.__peaks:
a,b = peak.split()
speclabel +=" %s" % (a+"-"+b)
speclabel +=" s(%s)" % (a+"-"+b)
edfname = ffile +"_"+a+"_"+b+trailing+suffix
elif peak in self.__concentrationsKeys:
speclabel +=" %s" % peak.replace(" ","-")
edfname = ffile +"_"+peak.replace(" ","_")+trailing+suffix
elif peak == 'chisq':
speclabel +=" %s" % (peak)
edfname = ffile +"_"+peak+trailing+suffix
else:
print("Unhandled peak name: %s. Not saved." % peak)
continue
dirname = os.path.dirname(edfname)
if not os.path.exists(dirname):
try:
os.mkdir(dirname)
except:
print("I could not create directory %s" % dirname)
Append = 0
if os.path.exists(edfname):
try:
os.remove(edfname)
except:
print("I cannot delete output file")
print("trying to append image to the end")
Append = 1
edfout = EdfFile.EdfFile(edfname, access='ab')
edfout.WriteImage ({'Title':peak} , self.__images[peak], Append=Append)
edfout = None
self.savedImages.append(edfname)
#save specfile format
if self.chunk is None:
specname = ffile+trailing+".dat"
else:
specname = ffile+trailing+"_%06d_partial.dat" % self.chunk
if os.path.exists(specname):
try:
os.remove(specname)
except:
pass
specfile=open(specname,'w+')
#specfile.write('\n')
#specfile.write('#S 1 %s\n' % (file+trailing))
#specfile.write('#N %d\n' % (len(self.__peaks)+2))
specfile.write('%s\n' % speclabel)
specline=""
imageRows = self.__images['chisq'].shape[0]
imageColumns = self.__images['chisq'].shape[1]
for row in range(imageRows):
for col in range(imageColumns):
specline += "%d" % row
specline += " %d" % col
for peak in self.__peaks:
#write area
specline +=" %g" % self.__images[peak][row][col]
#write sigma area
specline +=" %g" % self.__sigmas[peak][row][col]
#write global chisq
specline +=" %g" % self.__images['chisq'][row][col]
if self._concentrations:
for peak in self.__concentrationsKeys:
specline +=" %g" % self.__images[peak][row][col]
specline += "\n"
specfile.write("%s" % specline)
specline =""
specfile.write("\n")
specfile.close()
else:
for group in self.__ROIpeaks:
i = 0
grouptext = group.replace(" ","_")
for roi in self._ROIimages[group].keys():
#roitext = roi.replace(" ","-")
if (self.fileStep > 1) or (self.mcaStep > 1):
edfname = ffile+"_"+grouptext+("_%04deVROI_filestep_%02d_mcastep_%02d.edf" % (self.roiWidth,
self.fileStep, self.mcaStep ))
else:
edfname = ffile+"_"+grouptext+("_%04deVROI.edf" % self.roiWidth)
dirname = os.path.dirname(edfname)
if not os.path.exists(dirname):
try:
os.mkdir(dirname)
except:
print("I could not create directory %s" % dirname)
edfout = EdfFile.EdfFile(edfname)
edfout.WriteImage ({'Title':group+" "+roi} , self._ROIimages[group][roi],
Append=i)
if i==0:
self.savedImages.append(edfname)
i=1
if __name__ == "__main__":
import getopt
options = 'f'
longoptions = ['cfg=','pkm=','outdir=','roifit=','roi=','roiwidth=']
filelist = None
outdir = None
cfg = None
roifit = 0
roiwidth = 250.
opts, args = getopt.getopt(
sys.argv[1:],
options,
longoptions)
for opt,arg in opts:
if opt in ('--pkm','--cfg'):
cfg = arg
elif opt in ('--outdir'):
outdir = arg
elif opt in ('--roi','--roifit'):
roifit = int(arg)
elif opt in ('--roiwidth'):
roiwidth = float(arg)
filelist=args
if len(filelist) == 0:
print("No input files, run GUI")
sys.exit(0)
b = McaAdvancedFitBatch(cfg,filelist,outdir,roifit,roiwidth)
b.processList()
|