1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2016 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import copy
from . import Elements
from . import ConcentrationsTool
DEBUG = 0
class SingleLayerStrategy(object):
def __init__(self):
self._tool = ConcentrationsTool.ConcentrationsTool()
def applyStrategy(self, fitResult, fluorescenceRates, currentIteration=None):
"""
Provided a fit result, it returns an new fit configuration and
a positive integer to indicate the strategy procedure has not finished.
Returning an empty fit configuration, or a number of iterations equal 0
will indicate the process is over.
"""
if DEBUG:
print("SingleLayerStrategy called with iteration ", currentIteration)
newConfiguration = copy.deepcopy(fitResult['config'])
strategyConfiguration = newConfiguration['SingleLayerStrategy']
if currentIteration is None:
currentIteration = strategyConfiguration['iterations']
if currentIteration < 1:
# enough for the journey
return {}, 0
# calculate concentrations with current configuration
ddict = {}
ddict.update(newConfiguration['concentrations'])
ddict, addInfo = self._tool.processFitResult( \
config=ddict,
fitresult={"result":fitResult},
elementsfrommatrix=False,
fluorates = fluorescenceRates,
addinfo=True)
# find the layer to be updated the matrix
matrixKey = None
for attenuator in list(newConfiguration['attenuators'].keys()):
if not newConfiguration['attenuators'][attenuator][0]:
continue
if attenuator.upper() == "MATRIX":
if newConfiguration['attenuators'][attenuator][1].upper() != \
"MULTILAYER":
matrixKey = attenuator
else:
matrixKey = "MULTILAYER"
if matrixKey:
break
if matrixKey != "MULTILAYER":
parentKey = 'attenuators'
daughterKey = matrixKey
else:
parentKey = "multilayer"
daughterKey = None
if newConfiguration["SingleLayerStrategy"]["layer"].upper() == \
["AUTO"]:
# we have to find the layer where we should work
firstLayer = None
for layer in newConfiguration[parentKey]:
if newConfiguration[parentKey][layer][0]:
material = newConfiguration[parentKey][layer][1]
composition = Elements.getMaterialMassFractions( \
[material], [1.0])
for group in strategyConfiguration["peaks"]:
if "-" in group:
continue
ele = group.split()[0]
if ele in composition:
daughterLayer = layer
break
if firstLayer is None:
firstLayer = layer
if daughterKey is None:
daughterKey = firstLayer
else:
daughterKey = newConfiguration["SingleLayerStrategy"]["layer"]
if daughterKey is None:
raise ValueError("Cannot find appropriate sample layer")
# newConfiguration[parentKey][daughterKey] composition is to be updated
# get the new composition
total = 0.0
CompoundList = []
CompoundFraction = []
materialCounter = -1
for group in strategyConfiguration["peaks"]:
materialCounter += 1
if "-" in group:
continue
ele = group.split()[0]
material = strategyConfiguration["materials"][materialCounter]
if material in ["-", ele, ele + "1"]:
CompoundList.append(ele)
CompoundFraction.append(\
ddict["mass fraction"][group])
else:
massFractions = Elements.getMaterialMassFractions( \
[material], [1.0])
CompoundFraction.append(massFractions[ele] / \
ddict["mass fraction"][group])
CompoundList.append(material)
total += CompoundFraction[-1]
if strategyConfiguration["completer"] not in ["-"]:
if total < 1.0:
CompoundList.append(strategyConfiguration["completer"])
CompoundFraction.append(1.0 - total)
else:
for i in range(len(CompoundFraction)):
CompoundFraction[i] /= total;
else:
for i in range(len(CompoundFraction)):
CompoundFraction[i] /= total;
materialName = "SingleLayerStrategyMaterial"
newConfiguration["materials"][materialName] = \
{"Density": newConfiguration['attenuators'][attenuator][2],
"Thickness":newConfiguration['attenuators'][attenuator][3],
"CompoundList":CompoundList,
"CompoundFraction":CompoundFraction,
"Comment":"Last Single Layer Strategy iteration"}
# and update it
newConfiguration[parentKey][daughterKey][1] = materialName
if DEBUG:
print("Updated sample material: ", \
newConfiguration["materials"][materialName])
return newConfiguration, currentIteration - 1
|