1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2018 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import posixpath
import numpy
import h5py
import logging
_logger = logging.getLogger(__name__)
try:
from PyMca5.PyMcaCore import DataObject
from PyMca5.PyMcaMisc import PhysicalMemory
except ImportError:
_logger.info("HDF5Stack1D importing DataObject from local directory!")
import DataObject
import PhysicalMemory
try:
from PyMca5.PyMcaCore import NexusDataSource
from PyMca5.PyMcaCore import NexusTools
except ImportError:
_logger.info("HDF5Stack1D importing NexusDataSource from local directory!")
import NexusDataSource
import NexusDataSource
SOURCE_TYPE = "HDF5Stack1D"
class HDF5Stack1D(DataObject.DataObject):
def __init__(self, filelist, selection,
scanlist=None,
dtype=None):
DataObject.DataObject.__init__(self)
#the data type of the generated stack
self.__dtype0 = dtype
self.__dtype = dtype
if filelist is not None:
if selection is not None:
self.loadFileList(filelist, selection, scanlist)
def loadFileList(self, filelist, selection, scanlist=None):
"""
loadFileList(self, filelist, y, scanlist=None, monitor=None, x=None)
filelist is the list of file names belonging to the stack
selection is a dictionary with the keys x, y, m.
x is the path to the x data (the channels) in the spectrum,
without the first level "directory". It is unused (for now).
y is the path to the 1D data (the counts) in the spectrum,
without the first level "directory"
m is the path to the normalizing data (I0 or whatever)
without the first level "directory".
scanlist is the list of first level "directories" containing the 1D data
Example: The actual path has the form:
/whatever1/whatever2/counts
That means scanlist = ["/whatever1"]
and selection['y'] = "/whatever2/counts"
"""
_logger.debug("filelist = %s", filelist)
_logger.debug("selection = %s", selection)
_logger.debug("scanlist = %s", scanlist)
# all the files in the same source
hdfStack = NexusDataSource.NexusDataSource(filelist)
# if there is more than one file, it is assumed all the files have
# the same structure.
tmpHdf = hdfStack._sourceObjectList[0]
entryNames = []
for key in tmpHdf["/"].keys():
if isinstance(tmpHdf["/"+key], h5py.Group):
entryNames.append(key)
# built the selection in terms of HDF terms
# for the time being, only the first item in x selection used
xSelection = selection.get('x', None)
if xSelection is not None:
if type(xSelection) != type([]):
xSelection = [xSelection]
if type(xSelection) == type([]):
if len(xSelection):
xSelection = xSelection[0]
else:
xSelection = None
else:
xSelection = None
# only one y is taken
ySelection = selection['y']
if type(ySelection) == type([]):
ySelectionList = list(ySelection)
ySelection = ySelection[0]
else:
ySelectionList = [ySelection]
# monitor selection
mSelection = selection.get('m', None)
if mSelection not in [None, []]:
if type(mSelection) != type([]):
mSelection = [mSelection]
if type(mSelection) == type([]):
if len(mSelection):
mSelection = mSelection[0]
else:
mSelection = None
else:
mSelection = None
USE_JUST_KEYS = False
# deal with the pathological case where the scanlist corresponds
# to a selected top level dataset
if len(entryNames) == 0:
if scanlist is not None:
if (ySelection in scanlist) or \
(xSelection in scanlist) or \
(mSelection in scanlist):
scanlist = None
USE_JUST_KEYS = True
else:
USE_JUST_KEYS = True
elif len(entryNames) == 1:
# deal with the SOLEIL case of one entry but with different name
# in different files
USE_JUST_KEYS = True
elif scanlist in [None, []]:
USE_JUST_KEYS = True
if USE_JUST_KEYS:
# if the scanlist is None, it is assumed we are interested on all
# the scans containing the selection, not that all the scans
# contain the selection.
scanlist = []
if 0:
JUST_KEYS = False
#expect same entry names in the files
#Unfortunately this does not work for SOLEIL
for entry in entryNames:
path = "/" + entry + ySelection
dirname = posixpath.dirname(path)
base = posixpath.basename(path)
try:
file_entry = tmpHdf[dirname]
if base in file_entry.keys():
scanlist.append(entry)
except:
pass
else:
JUST_KEYS = True
#expect same structure in the files even if the
#names are different (SOLEIL ...)
if len(entryNames):
i = 0
for entry in entryNames:
i += 1
path = "/" + entry + ySelection
dirname = posixpath.dirname(path)
base = posixpath.basename(path)
try:
file_entry = tmpHdf[dirname]
if hasattr(file_entry, "keys"):
if base in file_entry.keys():
# this is the case of a selection inside a group
scanlist.append("1.%d" % i)
except KeyError:
_logger.warning("%s not in file, ignoring.", dirname)
if not len(scanlist):
if not ySelection.startswith("/"):
path = "/" + ySelection
else:
path = ySelection
dirname = posixpath.dirname(path)
base = posixpath.basename(path)
try:
if dirname in tmpHdf["/"]:
# this is the case of a dataset at top plevel
# or having given the complete path
if base in tmpHdf[dirname]:
JUST_KEYS = False
scanlist.append("")
elif base in file_entry.keys():
JUST_KEYS = False
scanlist.append("")
except:
#it will crash later on
pass
else:
JUST_KEYS = False
scanlist.append("")
else:
try:
number, order = [int(x) for x in scanlist[0].split(".")]
JUST_KEYS = True
except:
JUST_KEYS = False
if not JUST_KEYS:
for scan in scanlist:
if scan.startswith("/"):
t = scan[1:]
else:
t = scan
if t not in entryNames:
raise ValueError("Entry %s not in file" % scan)
nFiles = len(filelist)
nScans = len(scanlist)
if JUST_KEYS:
if not nScans:
raise IOError("No entry contains the required data")
_logger.debug("Retained number of files = %d", nFiles)
_logger.debug("Retained number of scans = %d", nScans)
# Now is to decide the number of mca ...
# I assume all the scans contain the same number of mca
if JUST_KEYS:
path = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + ySelection
if mSelection is not None:
mpath = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + mSelection
if xSelection is not None:
xpath = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + xSelection
else:
path = scanlist[0] + ySelection
if mSelection is not None:
mpath = scanlist[0] + mSelection
if xSelection is not None:
xpath = scanlist[0] + xSelection
yDataset = tmpHdf[path]
if (self.__dtype is None) or (mSelection is not None):
self.__dtype = yDataset.dtype
if self.__dtype in [numpy.int16, numpy.uint16]:
self.__dtype = numpy.float32
elif self.__dtype in [numpy.int32, numpy.uint32]:
if mSelection:
self.__dtype = numpy.float32
else:
self.__dtype = numpy.float64
elif self.__dtype not in [numpy.float16, numpy.float32,
numpy.float64]:
# Some datasets form CLS (origin APS?) arrive as data format
# equal to ">u2" and are not triggered as integer types
_logger.debug("Not basic dataset type %s", self.__dtype)
if ("%s" % self.__dtype).endswith("2"):
self.__dtype = numpy.float32
else:
if mSelection:
self.__dtype = numpy.float32
else:
self.__dtype = numpy.float64
# figure out the shape of the stack
shape = yDataset.shape
mcaIndex = selection.get('index', len(shape)-1)
if mcaIndex == -1:
mcaIndex = len(shape) - 1
_logger.debug("mcaIndex = %d", mcaIndex)
considerAsImages = False
dim0, dim1, mcaDim = self.getDimensions(nFiles, nScans, shape,
index=mcaIndex)
try:
if self.__dtype in [numpy.float32, numpy.int32]:
bytefactor = 4
elif self.__dtype in [numpy.int16, numpy.uint16]:
bytefactor = 2
elif self.__dtype in [numpy.int8, numpy.uint8]:
bytefactor = 1
else:
bytefactor = 8
neededMegaBytes = nFiles * dim0 * dim1 * (mcaDim * bytefactor/(1024*1024.))
physicalMemory = None
if hasattr(PhysicalMemory, "getAvailablePhysicalMemoryOrNone"):
physicalMemory = PhysicalMemory.getAvailablePhysicalMemoryOrNone()
if not physicalMemory:
physicalMemory = PhysicalMemory.getPhysicalMemoryOrNone()
if physicalMemory is None:
# 6 Gigabytes of available memory
# should be a good compromise in 2018
physicalMemory = 6000
else:
physicalMemory /= (1024*1024.)
if (neededMegaBytes > (0.95*physicalMemory))\
and (nFiles == 1) and (len(shape) == 3):
if self.__dtype0 is None:
if (bytefactor == 8) and (neededMegaBytes < (2*physicalMemory)):
# try reading as float32
print("Forcing the use of float32 data")
self.__dtype = numpy.float32
else:
raise MemoryError("Force dynamic loading")
else:
raise MemoryError("Force dynamic loading")
if (mcaIndex == 0) and ( nFiles == 1) and (nScans == 1):
#keep the original arrangement but in memory
self.data = numpy.zeros(yDataset.shape, self.__dtype)
considerAsImages = True
else:
# force arrangement as spectra
self.data = numpy.zeros((dim0, dim1, mcaDim), self.__dtype)
DONE = False
except (MemoryError, ValueError):
# some versions report ValueError instead of MemoryError
if (nFiles == 1) and (len(shape) == 3):
_logger.warning("Attempting dynamic loading")
if mSelection is not None:
_logger.warning("Ignoring monitor")
self.data = yDataset
if mSelection is not None:
mdtype = tmpHdf[mpath].dtype
if mdtype not in [numpy.float64, numpy.float32]:
mdtype = numpy.float64
mDataset = numpy.asarray(tmpHdf[mpath], dtype=mdtype)
self.monitor = [mDataset]
if xSelection is not None:
xDataset = tmpHdf[xpath].value
self.x = [xDataset]
if h5py.version.version < '2.0':
#prevent automatic closing keeping a reference
#to the open file
self._fileReference = hdfStack
DONE = True
else:
# what to do if the number of dimensions is only 2?
raise
# get the mca information associated to the path
mcaObjectPaths = NexusTools.getMcaObjectPaths(tmpHdf, path)
_time = None
_calibration = None
_channels = None
if considerAsImages:
self._pathHasRelevantInfo = False
else:
if len(list(mcaObjectPaths.keys())) > 1: # not just "counts"
self._pathHasRelevantInfo = True
if "live_time" in mcaObjectPaths:
if DONE:
# hopefully it will fit into memory
if mcaObjectPaths["live_time"] in tmpHdf:
_time = tmpHdf[mcaObjectPaths["live_time"]].value
elif "::" in mcaObjectPaths["live_time"]:
tmpFileName, tmpDatasetPath = \
mcaObjectPaths["live_time"].split("::")
with h5py.File(tmpFileName, "r") as tmpH5:
_time = tmpH5[tmpDatasetPath].value
else:
del mcaObjectPaths["live_time"]
else:
# we have to have as many live times as MCA spectra
_time = numpy.zeros( \
(self.data.shape[0] * self.data.shape[1]),
dtype=numpy.float64)
elif "elapsed_time" in mcaObjectPaths:
if DONE:
# hopefully it will fit into memory
if mcaObjectPaths["elapsed_time"] in tmpHdf:
_time = \
tmpHdf[mcaObjectPaths["elapsed_time"]].value
elif "::" in mcaObjectPaths["elapsed_time"]:
tmpFileName, tmpDatasetPath = \
mcaObjectPaths["elapsed_time"].split("::")
with h5py.File(tmpFileName, "r") as tmpH5:
_time = tmpH5[tmpDatasetPath].value
else:
del mcaObjectPaths["elapsed_time"]
else:
# we have to have as many elpased times as MCA spectra
_time = numpy.zeros((self.data.shape[0] * self.data.shape[1]),
numpy.float32)
if "calibration" in mcaObjectPaths:
if mcaObjectPaths["calibration"] in tmpHdf:
_calibration = \
tmpHdf[mcaObjectPaths["calibration"]].value
elif "::" in mcaObjectPaths["calibration"]:
tmpFileName, tmpDatasetPath = \
mcaObjectPaths["calibration"].split("::")
with h5py.File(tmpFileName, "r") as tmpH5:
_calibration = tmpH5[tmpDatasetPath].value
else:
del mcaObjectPaths["calibration"]
if "channels" in mcaObjectPaths:
if mcaObjectPaths["channels"] in tmpHdf:
_channels = \
tmpHdf[mcaObjectPaths["channels"]].value
elif "::" in mcaObjectPaths["channels"]:
tmpFileName, tmpDatasetPath = \
mcaObjectPaths["channels"].split("::")
with h5py.File(tmpFileName, "r") as tmpH5:
_channels = tmpH5[tmpDatasetPath].value
else:
del mcaObjectPaths["channels"]
else:
self._pathHasRelevantInfo = False
if (not DONE) and (not considerAsImages):
self.info["McaIndex"] = 2
n = 0
if dim0 == 1:
self.onBegin(dim1)
else:
self.onBegin(dim0)
self.incrProgressBar=0
for hdf in hdfStack._sourceObjectList:
entryNames = list(hdf["/"].keys())
goodEntryNames = []
for entry in entryNames:
tmpPath = "/" + entry
if hasattr(hdf[tmpPath], "keys"):
goodEntryNames.append(entry)
for scan in scanlist:
IN_MEMORY = None
nStart = n
for ySelection in ySelectionList:
n = nStart
if IN_MEMORY == False:
# We can only deal with one dynamic dataset
_logger.warning("Selection %s ignored", ySelection)
continue
if JUST_KEYS:
entryName = goodEntryNames[int(scan.split(".")[-1])-1]
path = entryName + ySelection
if mSelection is not None:
mpath = entryName + mSelection
mdtype = hdf[mpath].dtype
if mdtype not in [numpy.float64, numpy.float32]:
mdtype = numpy.float64
mDataset = numpy.asarray(hdf[mpath], dtype=mdtype)
if xSelection is not None:
xpath = entryName + xSelection
xDataset = hdf[xpath].value
else:
path = scan + ySelection
if mSelection is not None:
mpath = scan + mSelection
mdtype = hdf[mpath].dtype
if mdtype not in [numpy.float64, numpy.float32]:
mdtype = numpy.float64
mDataset = numpy.asarray(hdf[mpath], dtype=mdtype)
if xSelection is not None:
xpath = scan + xSelection
xDataset = hdf[xpath].value
try:
yDataset = hdf[path]
tmpShape = yDataset.shape
totalBytes = numpy.ones((1,), yDataset.dtype).itemsize
for nItems in tmpShape:
totalBytes *= nItems
if (totalBytes/(1024.*1024.)) > 500:
#read from disk
IN_MEMORY = False
else:
#read the data into memory
yDataset = hdf[path].value
IN_MEMORY = True
except (MemoryError, ValueError):
yDataset = hdf[path]
IN_MEMORY = False
nMcaInYDataset = 1
for dim in yDataset.shape:
nMcaInYDataset *= dim
nMcaInYDataset = int(nMcaInYDataset/mcaDim)
timeData = None
if _time is not None:
if "live_time" in mcaObjectPaths:
# it is assumed that all have the same structure!!!
timePath = NexusTools.getMcaObjectPaths(hdf, path)["live_time"]
elif "elapsed_time" in mcaObjectPaths:
timePath = NexusTools.getMcaObjectPaths(hdf,
path)["elapsed_time"]
if timePath in hdf:
timeData = hdf[timePath].value
elif "::" in timePath:
externalFile, externalPath = timePath.split("::")
with h5py.File(externalFile, "r") as timeHdf:
timeData = timeHdf[externalPath].value
if mcaIndex != 0:
if IN_MEMORY:
yDataset.shape = -1, mcaDim
if mSelection is not None:
case = -1
nMonitorData = 1
for v in mDataset.shape:
nMonitorData *= v
if nMonitorData == nMcaInYDataset:
mDataset.shape = nMcaInYDataset
case = 0
elif nMonitorData == (nMcaInYDataset * mcaDim):
case = 1
mDataset.shape = nMcaInYDataset, mcaDim
if case == -1:
raise ValueError(\
"I do not know how to handle this monitor data")
if timeData is not None:
case = -1
nTimeData = 1
for v in timeData.shape:
nTimeData *= v
if nTimeData == nMcaInYDataset:
timeData.shape = nMcaInYDataset
case = 0
_time[nStart: nStart + nMcaInYDataset] += timeData
if case == -1:
_logger.warning("I do not know how to handle this time data")
_logger.warning("Ignoring time information")
_time= None
if (len(yDataset.shape) == 3) and\
(dim1 == yDataset.shape[1]):
mca = 0
deltaI = int(yDataset.shape[1]/dim1)
for ii in range(yDataset.shape[0]):
i = int(n/dim1)
yData = yDataset[ii:(ii+1)]
yData.shape = -1, mcaDim
if mSelection is not None:
if case == 0:
mData = numpy.outer(mDataset[mca:(mca+dim1)],
numpy.ones((mcaDim)))
self.data[i, :, :] += yData / mData
elif case == 1:
mData = mDataset[mca:(mca+dim1), :]
mData.shape = -1, mcaDim
self.data[i, :, :] += yData / mData
else:
self.data[i:(i+deltaI), :] += yData
n += yDataset.shape[1]
mca += dim1
else:
for mca in range(nMcaInYDataset):
i = int(n/dim1)
j = n % dim1
if len(yDataset.shape) == 3:
ii = int(mca/yDataset.shape[1])
jj = mca % yDataset.shape[1]
yData = yDataset[ii, jj]
elif len(yDataset.shape) == 2:
yData = yDataset[mca,:]
elif len(yDataset.shape) == 1:
yData = yDataset
if mSelection is not None:
if case == 0:
self.data[i, j, :] += yData / mDataset[mca]
elif case == 1:
self.data[i, j, :] += yData / mDataset[mca, :]
else:
self.data[i, j, :] += yData
n += 1
else:
if mSelection is not None:
case = -1
nMonitorData = 1
for v in mDataset.shape:
nMonitorData *= v
if nMonitorData == yDataset.shape[0]:
case = 3
mDataset.shape = yDataset.shape[0]
elif nMonitorData == nMcaInYDataset:
mDataset.shape = nMcaInYDataset
case = 0
#elif nMonitorData == (yDataset.shape[1] * yDataset.shape[2]):
# case = 1
# mDataset.shape = yDataset.shape[1], yDataset.shape[2]
if case == -1:
raise ValueError(\
"I do not know how to handle this monitor data")
if IN_MEMORY:
yDataset.shape = mcaDim, -1
if len(yDataset.shape) != 3:
for mca in range(nMcaInYDataset):
i = int(n/dim1)
j = n % dim1
if len(yDataset.shape) == 3:
ii = int(mca/yDataset.shape[2])
jj = mca % yDataset.shape[2]
yData = yDataset[:, ii, jj]
elif len(yDataset.shape) == 2:
yData = yDataset[:, mca]
elif len(yDataset.shape) == 1:
yData = yDataset[:]
if mSelection is not None:
if case == 0:
self.data[i, j, :] += yData / mDataset[mca]
elif case == 1:
self.data[i, j, :] += yData / mDataset[:, mca]
elif case == 3:
self.data[i, j, :] += yData / mDataset
else:
self.data[i, j, :] += yData
n += 1
else:
#stack of images to be read as MCA
for nImage in range(yDataset.shape[0]):
tmp = yDataset[nImage:(nImage+1)]
if len(tmp.shape) == 3:
i = int(n/dim1)
j = n % dim1
if 0:
#this loop is extremely SLOW!!!(and useless)
for ii in range(tmp.shape[1]):
for jj in range(tmp.shape[2]):
self.data[i+ii, j+jj, nImage] += tmp[0, ii, jj]
else:
self.data[i:i+tmp.shape[1],
j:j+tmp.shape[2], nImage] += tmp[0]
if mSelection is not None:
for mca in range(yDataset.shape[0]):
i = int(n/dim1)
j = n % dim1
yData = self.data[i, j, :]
if case == 0:
self.data[i, j, :] += yData / mDataset[mca]
elif case == 1:
self.data[i, j, :] += yData / mDataset[:, mca]
n += 1
else:
n += tmp.shape[1] * tmp.shape[2]
if dim0 == 1:
self.onProgress(j)
if dim0 != 1:
self.onProgress(i)
self.onEnd()
elif not DONE:
# data into memory but as images
self.info["McaIndex"] = mcaIndex
for hdf in hdfStack._sourceObjectList:
entryNames = list(hdf["/"].keys())
for scan in scanlist:
for ySelection in ySelectionList:
if JUST_KEYS:
entryName = entryNames[int(scan.split(".")[-1])-1]
path = entryName + ySelection
if mSelection is not None:
mpath = entryName + mSelection
mDataset.shape
if xSelection is not None:
xpath = entryName + xSelection
xDataset = hdf[xpath].value
else:
path = scan + ySelection
if mSelection is not None:
mpath = scan + mSelection
mdtype = hdf[mpath].dtype
if mdtype not in [numpy.float64, numpy.float32]:
mdtype = numpy.float64
mDataset = numpy.asarray(hdf[mpath], dtype=mdtype)
if xSelection is not None:
xpath = scan + xSelection
xDataset = hdf[xpath].value
if mSelection is not None:
nMonitorData = mDataset.size
case = -1
yDatasetShape = yDataset.shape
if nMonitorData == yDatasetShape[0]:
#as many monitor data as images
mDataset.shape = yDatasetShape[0]
case = 0
elif nMonitorData == (yDatasetShape[1] * yDatasetShape[2]):
#as many monitorData as pixels
case = 1
mDataset.shape = yDatasetShape[1], yDatasetShape[2]
if case == -1:
raise ValueError(\
"I do not know how to handle this monitor data")
if case == 0:
for i in range(yDatasetShape[0]):
self.data[i] += yDataset[i].value / mDataset[i]
elif case == 1:
for i in range(yDataset.shape[0]):
self.data[i] += yDataset[i] / mDataset
else:
for i in range(yDataset.shape[0]):
self.data[i:i+1] += yDataset[i:i+1]
else:
self.info["McaIndex"] = mcaIndex
if _time:
nRequiredValues = 1
for i in range(len(self.data.shape)):
if i != mcaIndex:
nRequiredValues *= self.data.shape[i]
if _time.size != nRequiredValues:
_logger.warning("I do not know how to interpret the time information")
_logger.warning("Ignoring time information")
_time = None
else:
_time.shape = -1
self.info["SourceType"] = SOURCE_TYPE
self.info["SourceName"] = filelist
self.info["Size"] = 1
self.info["NumberOfFiles"] = 1
if mcaIndex == 0:
self.info["FileIndex"] = 1
else:
self.info["FileIndex"] = 0
if _calibration is not None:
self.info['McaCalib'] = _calibration
else:
self.info['McaCalib'] = [ 0.0, 1.0, 0.0]
shape = self.data.shape
for i in range(len(shape)):
key = 'Dim_%d' % (i+1,)
self.info[key] = shape[i]
self.info['Channel0'] = 0
if xSelection is not None:
if xDataset.size == shape[self.info['McaIndex']]:
self.x = [xDataset.reshape(-1)]
else:
_logger.warning("Ignoring xSelection")
elif _channels is not None:
_channels.shape = -1
self.x = [_channels]
if _time is not None:
self.info["McaLiveTime"] = _time
def getDimensions(self, nFiles, nScans, shape, index=None):
#some body may want to overwrite this
"""
Returns the shape of the final stack as (Dim0, Dim1, Nchannels)
"""
if index is None:
index = -1
if index == -1:
index = len(shape) - 1
_logger.debug("INDEX = %d", index)
#figure out the shape of the stack
if len(shape) == 0:
#a scalar?
raise ValueError("Selection corresponds to a scalar")
elif len(shape) == 1:
#nchannels
nMca = 1
elif len(shape) == 2:
if index == 0:
#npoints x nchannels
nMca = shape[1]
else:
#npoints x nchannels
nMca = shape[0]
elif len(shape) == 3:
if index in [2, -1]:
#dim1 x dim2 x nchannels
nMca = shape[0] * shape[1]
elif index == 0:
nMca = shape[1] * shape[2]
else:
raise IndexError("Only first and last dimensions handled")
else:
nMca = 1
for i in range(len(shape)):
if i == index:
continue
nMca *= shape[i]
mcaDim = shape[index]
_logger.debug("nMca = %d", nMca)
_logger.debug("mcaDim = %s", mcaDim)
# HDF allows to work directly from the files without loading
# them into memory.
if (nScans == 1) and (nFiles > 1):
if nMca == 1:
#specfile like case
dim0 = nFiles
dim1 = nMca * nScans # nScans is 1
else:
#ESRF EDF like case
dim0 = nFiles
dim1 = nMca * nScans # nScans is 1
elif (nScans == 1) and (nFiles == 1):
if nMca == 1:
#specfile like single mca
dim0 = nFiles # it is 1
dim1 = nMca * nScans # nScans is 1
elif len(shape) == 2:
dim0 = nFiles # it is 1
dim1 = nMca * nScans # nScans is 1
elif len(shape) == 3:
if index == 0:
dim0 = shape[1]
dim1 = shape[2]
else:
dim0 = shape[0]
dim1 = shape[1]
else:
#specfile like multiple mca
dim0 = nFiles # it is 1
dim1 = nMca * nScans # nScans is 1
elif (nScans > 1) and (nFiles == 1):
if nMca == 1:
#specfile like case
dim0 = nFiles
dim1 = nMca * nScans
elif nMca > 1:
if len(shape) == 1:
#specfile like case
dim0 = nFiles
dim1 = nMca * nScans
elif len(shape) == 2:
dim0 = nScans
dim1 = nMca #shape[0]
elif len(shape) == 3:
if (shape[0] == 1) or (shape[1] == 1):
dim0 = nScans
dim1 = nMca
else:
#The user will have to decide the shape
dim0 = 1
dim1 = nScans * nMca
else:
#The user will have to decide the shape
dim0 = 1
dim1 = nScans * nMca
elif (nScans > 1) and (nFiles > 1):
dim0 = nFiles
dim1 = nMca * nScans
else:
#I should not reach this point
raise ValueError("Unhandled case")
return dim0, dim1, shape[index]
def onBegin(self, n):
pass
def onProgress(self, n):
pass
def onEnd(self):
pass
|