1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2014 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import os
import sys
import re
import struct
import numpy
import copy
import logging
from PyMca5 import DataObject
_logger = logging.getLogger(__name__)
SOURCE_TYPE = "EdfFileStack"
class OmnicMap(DataObject.DataObject):
'''
Class to read OMNIC .map files
It reads the spectra into a DataObject instance.
This class info member contains all the parsed information.
This class data member contains the map itself as a 3D array.
'''
def __init__(self, filename):
'''
Parameters:
-----------
filename : str
Name of the .map file.
It is expected to work with OMNIC versions 7.x and 8.x
'''
DataObject.DataObject.__init__(self)
if sys.platform == 'win32':
fid = open(filename, 'rb')
else:
fid = open(filename, 'r')
data = fid.read()
fid.close()
try:
omnicInfo = self._getOmnicInfo(data)
except:
omnicInfo = None
self.sourceName = [filename]
if sys.version < '3.0':
searchedChain = "Spectrum "
else:
searchedChain = bytes("Spectrum ", 'utf-8')
firstByte = data.index(searchedChain)
s = data[firstByte:(firstByte + 100 - 16)]
if sys.version >= '3.0':
s = str(s)
_logger.debug("firstByte = %d", firstByte)
_logger.debug("s1 = %s ", s)
exp = re.compile('(-?[0-9]+\.?[0-9]*)')
tmpValues = exp.findall(s)
spectrumIndex = int(tmpValues[0])
self.nSpectra = int(tmpValues[1])
if "X = " in s:
xPosition = float(tmpValues[2])
yPosition = float(tmpValues[3])
else:
# I have to calculate them from the scan
xPosition, yPosition = self.getPositionFromIndexAndInfo(0, omnicInfo)
_logger.debug("spectrumIndex, nSpectra, xPosition, yPosition = %d %d %f %f",
spectrumIndex, self.nSpectra, xPosition, yPosition)
if sys.version < '3.0':
chain = "Spectrum"
else:
chain = bytes("Spectrum", 'utf-8')
secondByte = data[(firstByte + 1):].index(chain)
secondByte += firstByte + 1
_logger.debug("secondByte = %s", secondByte)
self.nChannels = int((secondByte - firstByte - 100) / 4)
_logger.debug("nChannels = %d", self.nChannels)
self.firstSpectrumOffset = firstByte - 16
#fill the header
self.header = []
oldXPosition = xPosition
oldYPosition = yPosition
self.nRows = 0
for i in range(self.nSpectra):
offset = int(firstByte + i * (100 + self.nChannels * 4))
if sys.version < '3.0':
s = data[offset:(offset + 100 - 16)]
else:
s = str(data[offset:(offset + 100 - 16)])
tmpValues = exp.findall(s)
spectrumIndex = int(tmpValues[0])
if "X = " in s:
xPosition = float(tmpValues[2])
yPosition = float(tmpValues[3])
else:
#I have to calculate them from the scan
xPosition, yPosition = self.getPositionFromIndexAndInfo(i, omnicInfo)
if (abs(yPosition - oldYPosition) > 1.0e-6) and\
(abs(xPosition - oldXPosition) < 1.0e-6):
break
self.nRows += 1
_logger.debug("DIMENSIONS X = %f Y=%d",
self.nSpectra * 1.0 / self.nRows, self.nRows)
#arrange as an EDF Stack
self.info = {}
self.__nFiles = int(self.nSpectra / self.nRows)
self.data = numpy.zeros((self.__nFiles, self.nRows, self.nChannels),
dtype=numpy.float32)
self.__nImagesPerFile = 1
offset = firstByte - 16 + 100 # starting position of the data
delta = 100 + self.nChannels * 4
fmt = "%df" % self.nChannels
for i in range(self.__nFiles):
for j in range(self.nRows):
# this approach is inneficient when compared to a direct
# data readout, but it allows to deal with nan at the source
tmpData = numpy.zeros((self.nChannels,), dtype=numpy.float32)
tmpData[:] = struct.unpack(fmt,\
data[offset:(offset + delta - 100)])
finiteData = numpy.isfinite(tmpData)
self.data[i, j, finiteData] = tmpData[finiteData]
offset = int(offset + delta)
shape = self.data.shape
for i in range(len(shape)):
key = 'Dim_%d' % (i + 1,)
self.info[key] = shape[i]
self.info["SourceType"] = SOURCE_TYPE
self.info["SourceName"] = self.sourceName
self.info["Size"] = self.__nFiles * self.__nImagesPerFile
self.info["NumberOfFiles"] = self.__nFiles * 1
self.info["FileIndex"] = 0
self.info["Channel0"] = 0.0
if omnicInfo is not None:
self.info['McaCalib'] = [omnicInfo['First X value'] * 1.0,
omnicInfo['Data spacing'] * 1.0,
0.0]
else:
self.info["McaCalib"] = [0.0, 1.0, 0.0]
self.info['OmnicInfo'] = omnicInfo
def _getOmnicInfo(self, data):
'''
Parameters:
-----------
data : The contents of the .map file
Returns:
--------
A dictionnary with acquisition information
'''
#additional information
fmt = "I" # unsigned long in 32-bit
offset = 372 # 93*4 unsigned integers
infoBlockIndex = (struct.unpack(fmt, data[offset:(offset + 4)])[0] - 204) / 4.
infoBlockIndex = int(infoBlockIndex)
#infoblock is the position of the information block
offset = infoBlockIndex * 4
#read 13 unsigned integers
nValues = 13
fmt = "%dI" % nValues
values = struct.unpack(fmt, data[offset:(offset + 4 * nValues)])
ddict = {}
ddict['Number of points'] = values[0]
ddict['Number of scan points'] = values[6]
ddict['Interferogram peak position'] = values[7]
ddict['Number of sample scans'] = values[8]
ddict['Number of FFT points'] = values[10]
ddict['Number of background scans'] = values[12]
offset = (infoBlockIndex + 3) * 4
nFloats = 47
fmt = "%df" % nFloats
vFloats = struct.unpack(fmt, data[offset:(offset + 4 * nFloats)])
lastX = vFloats[0]
firstX = vFloats[1]
ddict['First X value'] = firstX
ddict['Last X value'] = lastX
ddict['Identifier for start indices of spectra'] = vFloats[14]
ddict['Laser frequency'] = vFloats[16]
ddict['Data spacing'] = (lastX - firstX) / (ddict['Number of points'] - 1.0)
ddict['Background gain'] = vFloats[10]
for key in ddict.keys():
_logger.debug("%s: %s", key, ddict[key])
ddict.update(self.getMapInformation(data))
return ddict
def getMapInformation(self, data):
'''
Internal method to help finding spectra coordinates
Parameters:
-----------
data : Contents of the .map file
Returns:
--------
Dictionnary with map gemoetrical acquisition parameters
'''
#look for the chain 'Position'
if sys.version < '3.0':
chain = 'Position'
else:
chain = bytes('Position', 'utf-8')
offset = data.index(chain)
positions = [offset]
while True:
try:
a = data[(offset + 1):].index(chain)
offset = a + offset + 1
positions.append(offset)
except ValueError:
break
ddict = {}
#map description position
if (positions[1] - positions[0]) == 66: # reverse engineered magic number :-)
mapDescriptionOffset = positions[0] - 90
mapDescription = struct.unpack('6f', data[mapDescriptionOffset:mapDescriptionOffset + 24])
y0, y1, deltaY, x0, x1, deltaX = mapDescription
ddict['First map location'] = [x0, y0]
ddict['Last map location'] = [x1, y1]
ddict['Mapping stage X step size'] = deltaX
ddict['Mapping stage Y step size'] = deltaY
ddict['Number of spectra'] = abs((1 + ((y1 - y0) / deltaY)) * (1 + ((x1 - x0) / deltaX)))
for key in ddict.keys():
_logger.debug("%s: %s", key, ddict[key])
return ddict
def getOmnicInfo(self):
"""
Returns a dictionnary with the parsed OMNIC information
"""
return copy.deepcopy(self.info['OmnicInfo'])
def getPositionFromIndexAndInfo(self, index, info=None):
'''
Internal method to obtain the position at which a spectrum
was acquired
Parameters:
-----------
index : int
Index of spectrum
info : Dictionnary
Information recovered with _getOmnicInfo
Returns:
--------
x, y : floats
Position at which the spectrum was acquired.
'''
if info is None:
return 0.0, 0.0
ddict = info
#first variation on X and then on Y
try:
x0, y0 = ddict['First map location']
except KeyError:
return 0.0, 0.0
x1, y1 = ddict['Last map location']
deltaX = ddict['Mapping stage X step size']
deltaY = ddict['Mapping stage Y step size']
nX = int(1 + ((x1 - x0) / deltaX))
x = x0 + (index % nX) * deltaX
y = y0 + int(index / nX) * deltaY
return x, y
if __name__ == "__main__":
filename = None
if len(sys.argv) > 2:
_logger.setLevel(logging.DEBUG)
if len(sys.argv) > 1:
filename = sys.argv[1]
elif os.path.exists("SambaPhg_IR.map"):
filename = "SambaPhg_IR.map"
if filename is not None:
w = OmnicMap(filename)
print(type(w))
print(type(w.data[0:10]))
print(w.data[0:10])
print("shape = ", w.data.shape)
print(type(w.info))
print("INFO = ", w.info['OmnicInfo'])
else:
print("Please supply input filename")
|