1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Wout De Nolf"
__contact__ = "wout.de_nolf@esrf.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import os
import sys
import numpy
import logging
import time
import re
import itertools
if sys.version_info[0] < 3:
string_types = basestring,
else:
string_types = str,
from contextlib import contextmanager
from collections import defaultdict
try:
from collections.abc import MutableMapping
except ImportError:
from collections import MutableMapping
from . import NexusUtils
_logger = logging.getLogger(__name__)
if NexusUtils.h5py is None:
bufferTypes = list, numpy.ndarray
else:
bufferTypes = list, numpy.ndarray, NexusUtils.h5py.Dataset
class OutputBuffer(MutableMapping):
"""
Dictionary enriched with memory allocation and save options.
Implicite saving with context:
outbuffer = OutputBuffer(...)
with outbuffer.saveContext():
...
Explicite saving without context:
outbuffer = OutputBuffer(...)
...
outbuffer.save()
"""
def __init__(self, outputDir=None, outputRoot=None, fileEntry=None,
fileProcess=None, suffix=None, h5=True,
tif=False, edf=False, csv=False, dat=False,
multipage=False, overwrite=False,
nosave=False, dtype=None):
"""
Dictionary will be saved as:
.h5 : outputDir/outputRoot+suffix.h5::/fileEntry/fileProcess
.edf/.csv/.tif: outputDir/outputRoot/fileEntry+suffix.ext
:param str outputDir: default: current working directory
:param str outputRoot: default: "IMAGES"
:param str fileEntry: default: "images"
:param str fileProcess: default: "pymcaprocess"
:param bool tif:
:param bool edf:
:param bool csv:
:param bool dat:
:param bool h5:
:param bool multipage: all images in 1 file if the format allows it
:param bool overwrite:
:param str suffix: default: None
:param bool nosave: prevent saving (everything will be in memory)
:param dtype: force dtype on memory allocation
"""
self._inBufferContext = False
self._inSaveContext = False
self._buffers = {}
self._info = {}
self._results = {}
self._labels = {}
self._nxprocess = None
self._labelFormats = defaultdict(lambda: '')
self._defaultgroups = ()
self._defaultorder = ()
self._optionalimage = ()
self._configurationkey = 'configuration'
self._forcedtype = dtype
self.outputRootDefault = 'IMAGES'
self.fileEntryDefault = 'images'
self.fileProcessDefault = 'pymcaprocess'
self.outputDir = outputDir
self.outputRoot = outputRoot
self.fileEntry = fileEntry
self.fileProcess = fileProcess
self.suffix = suffix
self.tif = tif
self.edf = edf
self.csv = csv
self.dat = dat
self.h5 = h5
self.multipage = multipage
self.overwrite = overwrite
self.nosave = nosave
def __getitem__(self, key):
try:
return self._buffers[key]
except KeyError:
return self._info[key]
def __setitem__(self, key, value):
if isinstance(value, bufferTypes):
self.allocateMemory(key, data=value)
else:
self._info[key] = value
def __delitem__(self, key):
try:
del self._buffers[key]
except KeyError:
del self._info[key]
def __iter__(self):
return itertools.chain(iter(self._buffers), iter(self._info))
def __len__(self):
return len(self._buffers) + len(self._info)
def __repr__(self):
return "OutputBuffer(outputDir={}, outputRoot={}, fileEntry={}, suffix={})"\
.format(repr(self.outputDir), repr(self.outputRoot),
repr(self.fileEntry), repr(self.suffix))
def hasAllocatedMemory(self):
return bool(self._buffers)
def labelFormat(self, group, prefix):
"""For single-page edf/tif file names
"""
self._labelFormats[group] = prefix
@property
def outputRoot(self):
ret = self._outputRoot
if ret:
return ret
else:
return self.outputRootDefault
@outputRoot.setter
def outputRoot(self, value):
self._checkBufferContext()
self._outputRoot = value
@property
def fileEntry(self):
ret = self._fileEntry
if ret:
return ret
else:
return self.fileEntryDefault
@fileEntry.setter
def fileEntry(self, value):
self._checkBufferContext()
self._fileEntry = value
@property
def fileProcess(self):
ret = self._fileProcess
if ret:
return ret
else:
return self.fileProcessDefault
@fileProcess.setter
def fileProcess(self, value):
self._checkBufferContext()
self._fileProcess = value
@property
def extensions(self):
lst = []
if self.h5:
lst.append('.h5')
if self.dat:
lst.append('.dat')
if self.csv:
lst.append('.csv')
if self.tif:
lst.append('.tif')
if self.edf:
lst.append('.edf')
return lst
@extensions.setter
def extensions(self, lst):
for ext in lst:
if ext.startswith('.'):
attr = ext[1:]
else:
attr = ext
if hasattr(self, attr):
setattr(self, attr, True)
@property
def edf(self):
return self._edf
@edf.setter
def edf(self, value):
self._checkBufferContext()
self._edf = value
@property
def tif(self):
return self._tif
@tif.setter
def tif(self, value):
self._checkBufferContext()
self._tif = value
@property
def csv(self):
return self._csv
@csv.setter
def csv(self, value):
self._checkBufferContext()
self._csv = value
@property
def dat(self):
return self._dat
@dat.setter
def dat(self, value):
self._checkBufferContext()
self._dat = value
@property
def cfg(self):
return self.csv or self.dat or self.edf or self.tif
@property
def overwrite(self):
return self._overwrite
@overwrite.setter
def overwrite(self, value):
self._checkBufferContext()
self._overwrite = bool(value)
@property
def nosave(self):
return self._nosave
@nosave.setter
def nosave(self, value):
self._checkBufferContext()
self._nosave = bool(value)
def _checkBufferContext(self):
if self._inBufferContext:
raise RuntimeError('Buffer is locked')
@property
def outputDirLegacy(self):
#return os.path.join(self.outputDir, self.outputRoot)
# REMARK: do this to be compatible with the legacy code
return os.path.join(self.outputDir, 'IMAGES')
def filename(self, ext, suffix=None):
if not suffix:
suffix = ""
if self.suffix:
suffix += self.suffix
if ext == '.h5':
return os.path.join(self.outputDir, self.outputRoot+suffix+ext)
else:
return os.path.join(self.outputDirLegacy, self.fileEntry+suffix+ext)
def allocateMemory(self, label, group=None, memtype='ram', **kwargs):
"""
:param str label:
:param str group: group name of this dataset (in hdf5 this is the nxdata name)
:param str memtype: ram or hdf5
:param **kwargs: see _allocateRam or _allocateHdf5
"""
memtype = memtype.lower()
if self._forcedtype is not None:
kwargs['dtype'] = self._forcedtype
if not group:
group = label
allocH5 = memtype in ('hdf5', 'h5', 'nx', 'nexus')
if allocH5:
allocH5 = False
if self.nosave:
_logger.info('Allocate in memory instead of Hdf5 (saving is disabled)')
elif not self.h5:
_logger.info('Allocate in memory instead of Hdf5 (h5 format is disabled)')
elif NexusUtils.h5py is None:
_logger.info('Allocate in memory instead of Hdf5 (h5py not installed)')
elif not self.outputDir:
_logger.warning('Allocate in memory instead of Hdf5 (no output directory specified)')
else:
allocH5 = True
if allocH5:
buffer = self._allocateHdf5(label, group=group, **kwargs)
else:
buffer = self._allocateRam(label, group=group, **kwargs)
return buffer
def _allocateRam(self, label, group=None, fill_value=None, dataAttrs=None,
data=None, shape=None, dtype=None, labels=None,
groupAttrs=None, **unused):
"""
:param str label:
:param str group: group name of this dataset (in hdf5 this is the nxdata name)
:param num fill_value: initial buffer item value
:param dict dataAttrs: dataset attributes
:param ndarray data: dataset or stack of datasets
:param tuple shape: buffer shape
:param dtype: buffer type
:param list labels: for stack of datasets
:param dict groupAttrs: nxdata attributes (e.g. axes)
"""
if data is not None:
buffer = numpy.asarray(data, dtype=dtype)
if fill_value is not None:
buffer[:] = fill_value
elif fill_value is None:
buffer = numpy.empty(shape, dtype=dtype)
elif fill_value == 0:
buffer = numpy.zeros(shape, dtype=dtype)
else:
buffer = numpy.full(shape, fill_value, dtype=dtype)
self._buffers[label] = buffer
# Prepare Hdf5 dataset arguments
if labels:
names = self._labelsToHdf5Strings(labels)
for lbl, name, data in zip(labels, names, buffer):
self._addResult(group, lbl, name, data, dataAttrs, groupAttrs)
else:
name = self._labelsToHdf5Strings([label])[0]
self._addResult(group, label, name, buffer, dataAttrs, groupAttrs)
return buffer
def _allocateHdf5(self, label, group=None, fill_value=None, dataAttrs=None,
data=None, shape=None, dtype=None, labels=None,
groupAttrs=None, **createkwargs):
"""
:param str or tuple label:
:param str group: group name of this dataset (in hdf5 this is the nxdata name)
:param num fill_value: initial buffer item value
:param dict dataAttrs: dataset attributes
:param ndarray data: dataset or stack of datasets
:param tuple shape: buffer shape
:param dtype: buffer type
:param list labels: for stack of datasets
:param dict groupAttrs: nxdata attributes (e.g. axes)
:param **createkwargs: see h5py.Group.create_dataset
"""
if data is None and shape is None:
raise ValueError("Provide 'data' or 'shape'")
if data is None and dtype is None:
raise ValueError("Missing 'dtype' argument")
# Create Nxdata group (if not already there)
nxdata = self._getNXdataGroup(group)
# Create datasets (attributes will be handled later)
if labels:
names = self._labelsToHdf5Strings(labels)
buffer = [] # TODO: list of datasets cannot be indexed like a numpy array
if data is None:
signalshape = shape[1:]
for lbl, name in zip(labels, names):
dset = nxdata.create_dataset(name, shape=signalshape,
dtype=dtype, **createkwargs)
if fill_value is not None:
dset[()] = fill_value
self._addResult(group, lbl, name, dset, dataAttrs, groupAttrs)
buffer.append(dset)
else:
for lbl, name, signaldata in zip(labels, names, data):
if dtype is not None:
signaldata = signaldata.astype(dtype)
dset = nxdata.create_dataset(name, data=signaldata,
**createkwargs)
if fill_value is not None:
dset[()] = fill_value
self._addResult(group, lbl, name, dset, dataAttrs, groupAttrs)
buffer.append(dset)
else:
name = self._labelsToHdf5Strings([label])[0]
if data is None:
buffer = nxdata.create_dataset(name, shape=shape,
dtype=dtype, **createkwargs)
else:
if dtype is not None:
try:
data = data.astype(dtype)
except AttributeError:
data = data[()].astype(dtype)
buffer = nxdata.create_dataset(name, data=data, **createkwargs)
if fill_value is not None:
buffer[()] = fill_value
self._addResult(group, label, name, buffer, dataAttrs, groupAttrs)
self.flush()
self._buffers[label] = buffer
return buffer
def _getNXdataGroup(self, group):
"""
Get h5py.Group (create when missing, verify class when present)
:param str group:
"""
parent = self._nxprocess['results']
if group in parent:
nxdata = parent[group]
NexusUtils.raiseIsNotNxClass(nxdata, u'NXdata')
else:
nxdata = NexusUtils.nxData(parent, group)
return nxdata
def _addResult(self, group, label, h5name, buffer, dataAttrs, groupAttrs):
# Prepare HDF5 output
# group -> NXdata (h5py.group), label -> signal (h5py.dataset)
info = self._results.get(group, None)
if info is None:
if groupAttrs:
info = groupAttrs.copy()
else:
info = {}
info['_signals'] = []
info['default'] = info.get('default', False)
info['errors'] = info.get('errors', None)
info['axes'] = info.get('axes', None)
info['axesused'] = info.get('axesused', None)
self._results[group] = info
if dataAttrs is None:
attrs = {}
else:
attrs = dataAttrs.copy()
attrs['chunks'] = attrs.get('chunks', True)
if buffer.ndim == 2:
interpretation = 'image'
else:
interpretation = 'spectrum'
attrs['interpretation'] = attrs.get('interpretation', interpretation)
info['_signals'].append((h5name, {'data': buffer}, attrs))
# Groups labels
labels = self._labels.get(group, None)
if labels is None:
self._labels[group] = labels = []
labels.append(label)
# Mark as default (unmark others)
if info['default']:
self.markDefault(group)
def labels(self, group, labeltype=None):
"""
:param str group:
:param str labeltype: 'hdf5': dataset names used in h5
'filename': file names
'title': titles used in edf/dat/csv/tif
else: join with space-separator
:returns list: strings or tuples
"""
labels = self._labels.get(group, [])
return self._labelsToStrings(group, labels, labeltype=labeltype)
def _labelsToStrings(self, group, labels, labeltype=None):
if not labels:
return labels
if labeltype == 'hdf5':
return self._labelsToHdf5Strings(labels)
elif labeltype == 'filename' or labeltype == 'title':
prefix = self._labelFormats[group]
return self._labelsToPathStrings(labels,
prefix=prefix,
filename=labeltype == 'filename')
else:
return labels
@staticmethod
def _labelsToPathStrings(labels, prefix='', separator='_', filename=False):
"""
Used for EDF files names and CSV titles
For example: ('Fe-K', 'Layer1') -> `s(Fe-K)_Layer1` (title)
-> `s(Fe_K)_Layer1` (filename)
:param list(tuple) labels:
:param str prefix: for decoration (for example s(...), w(...), ...)
:param str separator: to join the tuples (regular expression)
:param bool filename: file name or title
"""
if not labels:
return []
out = []
def replbrackets(matchobj):
return matchobj.group(1)+separator
separators = {r'\-', ':', ';', '_'}
separators -= {separator}
separators = '[' + ''.join(separators) + ']+'
for args in labels:
if not isinstance(args, tuple):
args = (args,)
if prefix:
args = ('{}({})'.format(prefix, args[0]), ) + args[1:]
label = separator.join(args)
# Replace spaces with separator
label = re.sub(r'\s+', separator, label)
if filename:
# Replace separators
label = re.sub(separators, separator, label)
# Replace brackets with a trailing separator
label = re.sub(r'\((.+)\)', replbrackets, label)
label = re.sub(r'\[(.+)\]', replbrackets, label)
label = re.sub(r'\{(.+)\}', replbrackets, label)
# Remove non-alphanumeric characters (except . and separator)
label = re.sub(r'[^0-9a-zA-Z\.'+separator+']+', '', label)
# Remove trailing/leading separators
label = re.sub('^'+separator+'+', '', label)
label = re.sub(separator+'+$', '', label)
# Remove repeated separators
label = re.sub(separator+'+', separator, label)
out.append(label)
return out
@staticmethod
def _labelsToHdf5Strings(labels, separator='_', replace=(r'\s+',)):
"""
Used for hdf5 dataset names
For example: ('Fe-K', 'Layer1') -> `Fe-K_Layer1`
:param list(tuple) labels:
:param str separator: to join the tuples (regular expression)
:param tuple(str) replace: to be replaced by the `separator` (regular expressions)
"""
if not labels:
return []
out = []
for args in labels:
if not isinstance(args, tuple):
args = (args,)
for srepl in replace:
args = tuple(re.sub(srepl, separator, s) for s in args)
out.append(separator.join(args))
return out
def markDefault(self, group):
for groupname, info in self._results.items():
info['default'] = groupname == group
@contextmanager
def bufferContext(self, update=True):
"""
Prepare output buffers (HDF5: create file, NXentry and NXprocess)
:param bool update: True: update existing NXprocess
False: overwrite or raise an exception
:raises RuntimeError: NXprocess exists and overwrite==False
"""
if self._inBufferContext:
yield
else:
self._inBufferContext = True
_logger.debug('Enter buffering context of {}'.format(self))
try:
if self.h5:
if self._nxprocess is None and self.outputDir:
cleanup_funcs = []
try:
with self._h5Context(cleanup_funcs, update=update):
yield
except:
# clean-up and re-raise
for func in cleanup_funcs:
func()
raise
else:
yield
else:
yield
finally:
self._inBufferContext = False
_logger.debug('Exit buffering context of {}'.format(self))
@contextmanager
def _h5Context(self, cleanup_funcs, update=True):
"""
Initialize NXprocess on enter and close/cleanup on exit
"""
if self.nosave:
yield
else:
fileName = self.filename('.h5')
existed = [False]*3 # h5file, nxentry, nxprocess
existed[0] = os.path.exists(fileName)
with NexusUtils.nxRoot(fileName, mode='a') as f:
# Open/overwrite NXprocess: h5file::/entry/process
entryname = self.fileEntry
existed[1] = entryname in f
entry = NexusUtils.nxEntry(f, entryname)
procname = self.fileProcess
if procname in entry:
existed[2] = True
path = entry[procname].name
if update:
_logger.debug('edit {}'.format(path))
elif self.overwrite:
_logger.info('overwriting {}::{}'.format(fileName, path))
del entry[procname]
existed[2] = False
else:
raise RuntimeError('{}::{} already exists'.format(fileName, path))
self._nxprocess = NexusUtils.nxProcess(entry, procname)
try:
with self._h5DatasetContext(f):
yield
except:
# clean-up and re-raise
if not existed[0]:
cleanup_funcs.append(lambda: os.remove(fileName))
elif not existed[1]:
del f[entryname]
elif not existed[2]:
del entry[procname]
raise
finally:
self._nxprocess = None
@contextmanager
def _h5DatasetContext(self, f):
"""
Swap strings for dataset objects on enter and back on exit
"""
update = {}
for k, v in self._buffers.items():
if isinstance(v, string_types):
update[k] = f[v]
self._buffers.update(update)
try:
yield
finally:
update = {}
for k, v in self._buffers.items():
if isinstance(v, NexusUtils.h5py.Dataset):
update[k] = v.name
self._buffers.update(update)
@contextmanager
def saveContext(self, update=False):
"""
Same as `bufferContext` but with `save` when leaving the context.
By default `update=False`: try overwriting (exception when not allowed)
"""
alreadyIn = self._inSaveContext
if not alreadyIn:
self._inSaveContext = True
_logger.debug('Enter saving context of {}'.format(self))
with self.bufferContext(update=update):
try:
yield
except:
raise
else:
if not alreadyIn:
self.save()
finally:
if not alreadyIn:
self._inSaveContext = False
_logger.debug('Exit saving context of {}'.format(self))
@contextmanager
def Context(self, save=True, update=False):
"""
Either saveContext or bufferContext.
By default `update=False`: try overwriting (exception when not allowed)
"""
if save:
with self.saveContext(update=update):
yield
else:
with self.bufferContext(update=update):
yield
def flush(self):
if self._nxprocess is not None:
self._nxprocess.file.flush()
def save(self):
"""
Save result of XRF batch fitting. Preferrable use saveContext instead.
HDF5 NXprocess will be updated, not overwritten.
"""
_logger.debug('Saving {}'.format(self))
if self.nosave:
_logger.info('Fit results are not saved (saving is disabled)')
return
elif not (self.tif or self.edf or self.csv or self.dat or self.h5):
_logger.warning('Fit results are not saved (all output formats disabled)')
return
elif not self.outputDir:
_logger.warning('Fit results are not saved (no output directory specified)')
return
t0 = time.time()
with self.bufferContext(update=True):
if self.tif or self.edf or self.csv or self.dat:
self._saveImages()
if self.h5:
self._saveH5()
t = time.time() - t0
_logger.debug("Saving results elapsed = %f", t)
def _imageList(self, onlylabels=False):
imageFileLabels = []
if onlylabels:
out = imageFileLabels
else:
imageTitleLabels = []
imageList = []
out = imageFileLabels, imageTitleLabels, imageList
keys = list(self._buffers.keys())
groups = []
for key in self._defaultorder:
if key in keys:
groups.append(key)
keys.pop(keys.index(key))
groups += sorted(keys)
for group in groups:
names = self.labels(group, labeltype='filename')
buffer = self._buffers[group]
if len(names) == len(buffer):
# Stack of datasets
mnames = self.labels(group, labeltype='title')
for name, mname, bufferi in zip(names, mnames, buffer):
imageFileLabels.append(name)
if not onlylabels:
imageTitleLabels.append(mname)
imageList.append(bufferi[()])
else:
# Single dataset
if group.lower() in self._optionalimage:
name = self._labelsToStrings(group, [group], labeltype='filename')[0]
mname = self._labelsToStrings(group, [group], labeltype='title')[0]
imageFileLabels.append(name)
if not onlylabels:
imageTitleLabels.append(mname)
imageList.append(buffer[()])
return out
def filenames(self, ext):
if self.multipage or ext == '.h5':
return [self.filename(ext)]
else:
labels = self._imageList(onlylabels=True)
return [self.filename(ext, suffix="_" + label) for label in labels]
def _saveImages(self):
from PyMca5.PyMca import ArraySave
# List of images in deterministic order
imageFileLabels, imageTitleLabels, imageList = self._imageList()
if not imageFileLabels:
return
NexusUtils.mkdir(self.outputDirLegacy)
if self.edf:
if self.multipage:
fileName = self.filename('.edf')
self._checkOverwrite(fileName)
ArraySave.save2DArrayListAsEDF(imageList, fileName,
labels=imageTitleLabels)
else:
for label, title, image in zip(imageFileLabels, imageTitleLabels, imageList):
fileName = self.filename('.edf', suffix="_" + label)
self._checkOverwrite(fileName)
ArraySave.save2DArrayListAsEDF([image],
fileName,
labels=[title])
if self.tif:
if self.multipage:
fileName = self.filename('.tif')
self._checkOverwrite(fileName)
ArraySave.save2DArrayListAsMonochromaticTiff(imageList,
fileName,
labels=imageTitleLabels,
dtype=numpy.float32)
else:
for label, title, image in zip(imageFileLabels, imageTitleLabels, imageList):
fileName = self.filename('.tif', suffix="_" + label)
self._checkOverwrite(fileName)
ArraySave.save2DArrayListAsMonochromaticTiff([image],
fileName,
labels=[title],
dtype=numpy.float32)
if self.csv:
fileName = self.filename('.csv')
self._checkOverwrite(fileName)
ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=True,
labels=imageTitleLabels)
if self.dat:
fileName = self.filename('.dat')
self._checkOverwrite(fileName)
ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=False,
labels=imageTitleLabels)
if self.cfg and self._configurationkey in self:
fileName = self.filename('.cfg')
self._checkOverwrite(fileName)
self[self._configurationkey].write(fileName)
def _checkOverwrite(self, fileName):
if os.path.exists(fileName):
if self.overwrite:
_logger.info('overwriting {}'.format(fileName))
else:
raise RuntimeError('{} already exists'.format(fileName))
def _saveH5(self):
nxprocess = self._nxprocess
if nxprocess is None:
return
# Save fit configuration
configdict = self.get(self._configurationkey, None)
NexusUtils.nxProcessConfigurationInit(nxprocess, configdict=configdict)
# Save allocated memory
nxresults = nxprocess['results']
adderrors = []
markdefault = []
for group, info in self._results.items():
# Create group
nxdata = self._getNXdataGroup(group)
# Add signals
NexusUtils.nxDataAddSignals(nxdata, info['_signals'])
# Add axes
axes = info.get('axes', None)
axes_used = info.get('axesused', None)
if axes:
NexusUtils.nxDataAddAxes(nxdata, axes)
if axes_used:
axes = [(ax, None, None) for ax in axes_used]
NexusUtils.nxDataAddAxes(nxdata, axes, append=False)
# Add error links
errors = info['errors']
if errors:
adderrors.append((nxdata, errors))
# Default nxdata for visualization
if info['default']:
markdefault.append(nxdata)
# Error links and default for visualization
for nxdata, errors in adderrors:
if errors in nxresults:
NexusUtils.nxDataAddErrors(nxdata, nxresults[errors])
if markdefault:
NexusUtils.markDefault(markdefault[-1])
else:
for group in self._defaultgroups:
if group in nxresults:
NexusUtils.markDefault(nxresults[group])
break
|